
Rebuilding WERTi: Providing a
Platform for Second Language

Acquisition Assistance

Aleksandar Dimitrov

July 24, 2008

Contents

1 Introduction 2
1.1 Concept & Design . 2

2 The Development Process 3
2.1 Goals of the New Implementation . 3
2.2 Design Process . 4

3 The Architecture of the System 4
3.1 The UIMA Analysis Engines . 4
3.2 HTML Processing . 5
3.3 Finding Text to Process . 6
3.4 Linguistic Processing . 6

3.4.1 Tokenization . 6
3.4.2 Sentence Boundary Detection . 7
3.4.3 Part of Speech Tagging . 8
3.4.4 Post Processing - Input Enhancement 8

3.5 The User Interface . 9
3.5.1 The Interactive Web Interface . 9

3.6 Summary: A General Overview . 9

4 Conclusion 11
4.1 Loose Ends . 11

1

Hiermit versichere ich, dass ich die vorgelegte Arbeit
selbstständig und nur mit den angegebenen Quellen
und Hilfsmitteln (einschließlich des WWW und an-
derer elektronischer Quellen) angefertigt habe. Alle
Stellen der Arbeit, die ich anderen Werken dem Wort-
laut oder dem Sinne nach entnommen habe, sind ken-
ntlich gemacht.

(Aleksandar Dimitrov)

1 Introduction

Using tools and methods made available through recent achievements in computational
linguistics and related subjects to ease the process of second language acquisition has
only recently gained focus in research projects. While digitalized versions of traditional
data sources like dictionaries have already experienced usage to some extent, we have
yet to discover new and effective ways of aiding second language acquisition of adult
learners. Many systems have so far been proposed and their implementations vary in
quality and focus.

WERTi tries to approach this problem from a general perspective. Making use of
the momentum of the Internet, WERTi provides a platform for implementing linguistic
analysis and subsequent input enhancement methods on user specified pages from the
World Wide Web. Using Java Servlet and AJAX technology for serving content and
the UIMA framework for processing it in a dynamic and flexible manner, the goal is to
provide a platform for linguistic processing of online content that can go beyond input
enhancement and engage new and interactive methods.

1.1 Concept & Design

The original design of WERTi has been developed at Ohio State University by Detmar
Meurers, Vanessa Metcalf, Luiz Amaral, Chris Kovach and Cory Shain. It
is accessible at the following internet address:

(1) http://prospero.ling.ohio-state.edu/WERTi

The underlying research on WERTi is best summarized in Amaral et al. [2006] and
Metcalf and Meurers [2006].

At Tübingen University the concept has now been extended to encompass a wider
range of functionality and provide a more scalable solution. To achieve this, several
enterprise grade technologies have been put to use. Although this comes with certain
drawbacks (such as an increase in the code base by as much as over 1000%), they provided
the developer with a more flexible and robust architecture which should be able to cope
with most demands to the system. The development of the new system started on May

2

8th in 2008 and has been going on for one and a half month as of writing this paper.1

In this time, a total of over 3300 lines of Java code have been written2, accompanied by
about 2000 lines of XML code, mainly in the descriptor files for UIMA and the interface
models. Additionally, about 5000 lines of documentation in HTML have been generated
by the system and the developer. All of the development progress has been kept track
of in a version control system, so historical changes are easy to comprehend.

2 The Development Process

This section first explains the goals of the reimplementation and then displays in what
environment the project has been written and what technologies have been put to use.

2.1 Goals of the New Implementation

While the original implementation was written in the programming language Python,
the new design is rooted in Java technologies and makes use of several frameworks to
ensure maximum scalability.

The new system was written with several aspects in mind:

• While the original system was restricted to a few hand picked web sites and in
fact only supporting input from one particular news site3, the new system should
be able to support almost arbitrary input from sites in the World Wide Web. For
this the system has to perform reliable and robust evaluation of the site content
in order filter out text for later natural language processing tasks. This way the
system can provide the user with free choice over the target material

• Processing of site content was to be generalized and made to be as flexible as
possible in order to ensure maximum extensibility of the system. This also implied
splitting up different parts of natural language processing tasks on the input into
several interdependent steps. This way, the results of one of the Analysis Engines
can always serve as the input to other engines. Using UIMA, all processing can
happen at a meta-level through annotations, while leaving the document text
stateless and thus ensuring consistency among processing steps.

• Asynchronous client ↔ server communication capabilities were to be ensured in
order to allow evaluation of the user’s performance on target texts. Together with
an anticipated user account system this would provide the ability of measuring of
a particular user’s progress and provide them with automated feedback on their
abilities.

1Acknowledgements: I would like to thank my advisor Detmar Meurers for providing the unique
opportunity on working on the WERTi system. I would also like to thank Janina Radó, who
provided invaluable feedback about the writing of academic papers and also suggested some features
for the system.

2And countless more have been rewritten
3This site was http://www.reuters.com

3

• Overall the goal was to provide an easy to use, flexible and scalable web based
platform for methods of second language acquisition assistance.

2.2 Design Process

The work on the Java implementation of WERTi was mostly conducted by one person.
Given free choice over the development environment and frameworks, a considerable
part of the writing process was spent on evaluation and study of the technologies to be
applied. The only notable specifications set on the development environment were the
use of UIMA, which in turn implied the use of the Java programming language.

Development happened in a very productive atmosphere with mostly weekly project
meetings between the programmer and the project supervisor where core functionality
and the design of the analysis process were discussed. During the course of the design
process, the system was several times restructured and some parts of it have by now
been completely rewritten two or even three times.

Work on the code has to a great extent been performed using standard UNIX com-
mand line tools for writing, testing and debugging code. More advanced solutions like
the Eclipse Java IDE were also used because of their capabilities which allowed for or-
ganization of the work within the different frameworks in a more straight-forward way4.
All of the work has been tracked with a version control5 system on which further work
on the system will also depend.

3 The Architecture of the System

This section will explain the principles underlying WERTi’s functionality by first looking
at the data processing architecture and then showing how it is integrated into the user
interface of the web application.

3.1 The UIMA Analysis Engines

All text extraction and natural language processing work is done inside the UIMA ar-
chitecture. Modifications to the document’s structure are clearly separated from the
process of annotating it. This allows for ensuring natural language analysis is a consis-
tent process on one static input document.

The NLP routines only add annotations to the document, and they are not supposed
to change its state in any other way. Enriching the content of the web site is then
left to an outside module that processes only the annotations and does not look at the
document text itself. To achieve this degree of encapsulation between the different tasks,
the system has been split into three main parts, operating independently:

4Most importantly UIMA which comes with a number of useful Eclipse plug-ins to easily devise analysis
engine descriptors.

5The author chose to use the git version control system, which has been and developed for and
successfully used in the context of much greater code bases, such as the Linux kernel.

4

• HTML processing (Pre-Processing):

During initial processing of the input text, which at this stage consists of the
raw web site content retrieved by the server, HTML tag annotations are made
to distinguish HTML tags as non-natural language text. Then another module
finds “relevant” text within the text surrounded by tags. This lays ground to later
linguistic analysis by setting the margins of which parts of the document it has to
operate on.

• Linguistic Processing:

All linguistic tasks (tokenization, sentence boundary detection, part-of-speech tag-
ging. . .) on the text-annotations from the previous processing step are performed
in this module. This is also the most expensive step from a computational point
of view. Optimizations to the code are most likely to yield visible results here.

• Enhancement Processing (Post-Processing):

Post processing analysis provides annotations on the document text with regard
to the enhancement method the user inquired.

All steps operate solely on the CAS, UIMA’s native document model. This is also the
most strenuous requirement on analysis engines to be integrated into WERTi. While
external configuration may be read, there should be absolutely no side effects outside
the CAS - which is the only stateful entity during linguistic processing.

The next sections will explain all subsequent analysis steps in further detail.

3.2 HTML Processing

The HTML processor method was designed to be primitive and efficient. While us-
ing a fully capable HTML parser was considered, a more simple approach was favored
over a fully markup-aware and more heavy parsing. Full and formally correct HTML
markup was deemed unnecessary and parsing too time intensive and error-prone. Fur-
thermore, changing the implementation of an analysis step even this fundamental to
further processing should be easy and without side-effects as long as the requirements
to preconditions and postconditions are met.

Preconditions An input document retrieved in during earlier steps has been retrieved
and it exists in memory as an instance of a singleton String6 and is stored in the UIMA
CAS.

6As usual in UIMA. For large documents, UMIA provides ways of splitting up documents and process-
ing the chunks independently. However, UIMA only considers documents well beyond one megabyte
to be “big enough” to be split. The plain HTML most web pages serve rarely exceeds this mark.

5

Postconditions The document contains annotations marking up the positions and
spans of HTML tags in the document text. The names of tags7 are also stored and
a flag is set that denotes whether this tag is closing another sibling8.

3.3 Finding Text to Process

The next step in the pipeline is to find a way of denoting the text areas that will lay the
basis for later linguistic processing. Originally this part of the analysis engine was far
more productive than it is now. It has lost a large part of its functionality which has
been taken over by the linguistic processing itself.9

Currently, its main task is to eliminate whitespace and text between tag pairs consid-
ered irrelevant, mostly because they contain scripts and meta-information not actually
rendered to text by the user’s client.

This functionality could be further extended by providing hints and special cases for
certain recommended web sites, such as Wikipedia or various news sites. However, since
the source layout of most web pages is highly volatile, development focus has so far not
turned to evaluation of this idea.

Preconditions The CAS contains full HTML tag annotations.

Postconditions The CAS contains a markup of all text that is going to be considered
by the linguistic processing.

3.4 Linguistic Processing

Linguistic processing currently goes through 3 major steps: Tokenization, Sentence
Boundary Detection and Part of Speech Tagging. This steps subsequently depend on
each other.

3.4.1 Tokenization

Tokenization chunks the input from the previous processing steps into tokens of natural
language. Different tokenizers may perform differently and consider different type of
input spans to denote “tokens”. Taking this into account is especially important since
later steps may depend on a particular type of tokenization rules10. Several tokenizer
engines have been implemented, with the current alternatives being an interface to the

7E.g. “p” for the tag <p> or “div” for the dag <div>.
8A preceding slash in the tag name closes the tag.
9Coherence analysis during sentence boundary detection, which is explained further on has replaced

a more specialized approach of trying to find bits of natural language that do not constitute a full
text (e.g. choices in a menu or short statements in tables.)

10Part of speech tagging is particularly sensitive to tokenization. Penn Tree Bank trained taggers
usually require tokenization to happen according to the PTB tokenization guidelines. Currently,
WERTi’s tokenizers respect this guidelines, to provide a most general rule processing can rely on.

6

Stanford Tagger’s tokenizer11 and a simple example tokenizer, implemented locally for
testing purposes, which seems to perform similar in terms of quality, but better in terms
of performance and is the current default.

Precondition The CAS contains annotations that denote possible input to linguistic
processing tasks.

Postcondition The CAS contains a set of token annotations that can lay ground to all
further linguistic analysis.

3.4.2 Sentence Boundary Detection

The sentence boundary detector implemented is currently not very advanced and sim-
ply matches several regular expressions and even single characters considered to end a
sentence in all cases (., ? and !). This could be improved by making more educated
assumptions about the nature of the input tokens, but development has not focussed
on these issues so far. While part of speech tagging does generally benefit from strin-
gent denotations of sentences, the tagging process has so far been accurate enough and
providing a correct method of sentence boundary detection could prove non-trivial to
implement. This could also be an entry point for future projects to improve the sys-
tem’s functionality, as accurate sentence boundary detection is of great importance to
syntactic parsing.

This step also analyzes the denoted sentence’s coherence. This means, it takes a simple
statistical measure into account that compares the volume of text against the number
and length of tags over the sentence’s span in the raw document text. This has proven to
be useful in avoiding “enhancement” of user interfaces of web pages and other elements
not desirable as targets for input enhancement.

Precondition Annotations in the CAS exist for all relevant input tokens in natural
language.

Postcondition The CAS contains a markup of sentence boundaries. This markup only
depends on a starting and an ending point within the document text, possibly spanning
HTML tags12. The sentence annotations also contain coherence values between 0 and
1, with 1 denoting maximum coherence (only text tokens and no tags) and 0 denoting
minimum coherence.

11This tokenizer was written by Tim Grow, Teg Grenager, Christopher Manning, Jenny
Finkel

12UIMA provides a subiterator method to construct an iterator over annotations of a particular type
that are subsumed by another annotation of arbitrary type. It does not provide a general mechanism
for implementing distributed annotations that would have multiple beginning and ending points.

7

3.4.3 Part of Speech Tagging

Part of Speech tagging currently relies solely on external tools. Two taggers have so
far been implemented: The Penn Tree Bank Tagger 13 and the UIMA Sandbox Tagger.
A Java Interface in the analysis package provides a common abstraction mechanism
over the different taggers to be implemented. The Tagger interface declares processing
methods as synchronized, so calls to the tagging routines are blocking. This ensures
multiple clients running on the same server will not hinder the tagger in processing each
call correctly14.

Taggers are stored statically in server side context to ensure maximum performance
as tagger instantiation is typically very costly. Most taggers are stateless during tagging,
ensuring equal quality of results among calls.

Taking into account sentence coherence a explained earlier is not enforced, but en-
couraged.

Precondition The CAS contains annotations denoting tokens of natural language and
sentences thereof. The tagging process feeds on two types of annotations: Tokens and
Sentences. It has access to the token annotations via calls to the sentence annotation’s
subiterator.

Postcondition All Token annotations the tagger found tags for now carry a “tag”
field, indicating their part of speech tag. The annotator engine does not create new tag
annotations, but retains a semantic relationship between tokens and their part of speech
tags by using an annotation field to store the tag in.

3.4.4 Post Processing - Input Enhancement

This step depends on annotation results from the two preceding modules; certain HTML
markups are used in order to correctly organize all code later executed on client side.
While this is the last step performed by the analysis engines, it is still non-destructive
with respect to the document text as it only marks entry points for enhancement code.
Every annotation contains a list of document positions and a corresponding list of en-
hancement strings to be put into the respective document positions. Each enhancement
also covers a certain span - this way the enhancement process which generates the final
HTML page to be returned to the user can make sure enhancements don’t overlap or
conflict.

Precondition There exist annotations in the CAS which can be used as anchor points
for enhancements. Different post processing modules will depend on different kinds
of annotations. The current PoSEnhancer depends on Token annotations which carry
information about their part of speech tags.

13Written by Kristina Toutanova, Miler Lee, Joseph Smarr, Anna Rafferty
14No tagger of those evaluated for usage provides concurrent processing of input strings since tagging

is generally deemed to be an expensive step the machine performing it should focus on.

8

Postcondition The CAS contains enhancement annotations the main system can use
to enhance the document.

3.5 The User Interface

At the time of writing the user interface to the WERTi platform has not been finished yet.
As such, this section mostly provides a perspective on desired functionality, indicating
partial results when they are already implemented.

3.5.1 The Interactive Web Interface

WERTi is now a web application, written in the Google Web Toolkit, which compiles na-
tive AJAX code from Java sources. The toolkit thus provided a possibility of increasing
the consistency of the platform’s code by ensuring that it would be written using only
one programming language. The user interface components rely on RPCs to interact
with the server. RPCs15 provide an asynchronous method of interaction between client
server side code, so the user can be informed about the progress of their request and also
interact seamlessly with generated enhancements. While basic proof of concept for the
user interface is already finished, more components will be implemented shortly. Some
of the functionality intended for the system includes:

• Users should be provided with an account system and components for evaluating
their own progress in certain parts. For this, a basic database interface has been
written, connected to the PostgreSQL engine. Calls to the database will be imple-
mented in an asynchronous fashion, making use of non-blocking threading on the
server side.

• Input enhancement on the retrieved document should make more use of its po-
tential brought by the underlying framework. The chosen methods would allow
for interactive suggestions and on line feedback, as well as the implementation
of interesting new features possibly relying on client/server interaction. Partial
translation of the document text or only dictionary lookups would be one such
feature.

The main reason for the user interface to be in a usable, but yet to be finished state is
that development focus laid on making the back end reliable and stable enough to deal
with user requests first. With a solid base provided, the user interface can now make
use of the functionality described earlier in section 3.1.

3.6 Summary: A General Overview

A bird’s eye view of the system’s architecture is provided in 3.6.
Here the arrows denote general a communication pipeline between two components.

The graph shows how the system is divided into a client side (using AJAX written with

15Remote Procedure Calls

9

Figure 1: A simple overview of WERTi’s current architecture

10

the GWT), a server side (the Tomcat server) and a UIMA component on server side.
Requests from the client side are interpreted by the RPC server and yield an HTTP
request to a certain web site. This site’s content is then passed on the UIMA CAS,
which in turn feeds the analysis steps. The RPC server is also responsible for providing
a per-user configuration object the server side uses to represent the users demands.
Any component can read data from the configuration on server side, thus the relations
to it are not shown. Linguistic processing, as shown here also depends on external
tools to accomplish its task. The annotators feed the CAS with annotations, but their
interdependence is not displayed in the graph, to maintain simplicity. A server-side
enhancement engine then uses the Annotations and the CAS to create the document to
be returned to the user.

4 Conclusion

Writing a system of the complexity of WERTi has proven to be a great and very enjoy-
able challenge. Using corporate-grade environments, managing a large and constantly
growing code base and deploying an interactive web application on web servers using very
modern technologies have provided the author with great insights to the development
of larger scale projects. While background in computational linguistics was necessary in
order to make the right choices in the design of the natural language processing tasks,
working on the project also required flexibility in terms of software engineering and
design, as well as knowledge of Internet technology and the principles underlying the
World Wide Web.

The system itself has grown over the development process, which is currently contin-
uing. Although it has made significant progress and achieved most of its original design
goals, the final section will also discuss some enhancements to the system required in
order to bring full usability to WERTi.

4.1 Loose Ends

WERTi is by now in a mostly usable state. As such the programming project was a
success, although there still remain some loose ends to be implemented.

• Provide Easier Access to Users

The user interface is largely unwritten and lacks an interface to a web search engine
such as Google or Yahoo Web Search, in order to retrieve content relevant to topics
the user specifies.

User accounts and relational databases with user data could be used to track a
particular user’s success and provide them with positive and negative feedback,
e.g. showing in which context they regularly fail to give the right preposition
or determiner, or where they improved their score over time. RPC calls should
provide sufficient client ↔ server interaction capabilities for this.

11

• Provide a Greater Range of Features

The analysis engines could also feature lemmatization, shallow parsing, (partial)
translation and similar mechanisms for providing further methods of second lan-
guage acquisition assistance.

Work on the system will continue in an open fashion and additional developers are
encouraged to provide the author with their own ideas for implementation and code
contributions to the system. This paper can serve as an entry point to understand the
system at a more abstract level while the additional documentation integrated in the
code base should provide developers with easy access to the system’s inner workings.

References

Luiz Amaral, Vanessa Metcalf, and Detmar Meurers. Language awareness through re-
use of nlp technology, 2006. Pre-Conference workshop in CALL – Computational and
Linguistic Challenges. CALICO 2006. May 17, 2006. University of Hawaii.

Vanessa Metcalf and Detmar Meurers. Generating web-based english preposition exer-
cises from real-world texts, 2006. Talk at EUROCALL 2006 in Granada, Spain.

12

