
ICALL Activities for Gerunds vs. To-infinitives:
A Constraint Grammar-based Extension to the New WERTi System

Niels Ott & Ramon Ziai
Seminar für Sprachwissenschaft

Universität Tübingen
72074 Tübingen, Germany

{nott,rziai}@sfs.uni-tuebingen.de

Abstract

This paper describes the design and imple-
mentation of automatically generated ICALL
activities on authentic texts. These activities
allow ESL learners to practice the proper use
of the gerund vs. the to-infinitive. Results
show that the automatic creation of such ac-
tivities is feasible but further research is nec-
essary.

1 Introduction

Computer-Aided Language Learning (CALL) al-
lows students to do language learning exercises or
lessons on a computer. Usually these exercises
and lessons are prepared in advance by instruc-
tors. Intelligent Computer-Aided Language Learn-
ing (ICALL) adds Natural Language Processing
(NLP) to CALL. In the subfield of Authentic Text
ICALL (ATICALL), the preparation on exercises
is conducted on the fly on text material chosen by
the learner. Amaral et al. (2006) present WERTi,
a system providing language awareness activities
to learners in of English as a Secondary Language
(ESL). Those activities include the color highlight-
ing of targeted language phenomena (receptive pre-
sentation), and cloze tests having the learner fill in
the blanks (controlled practice).

Dimitrov (2008) presents a re-implementation
of the original Python-based WERTi system using
Java-based enterprise technology. The presented
work describes the extension of this new WERTi

system by three new activities. These activities fo-
cus on the use of the gerund vs. the to-infinitive in
English, allowing the learner to practice when to use
which. Depending on the context, it is appropriate to
use either the gerund verb form or the to-infinitive.
In some situations, they can be used interchange-
ably, in others they cannot. The proper use therefore
must be practiced by learners of English.

We discuss the linguistic grounds of gerunds and
to-infinitives. Furthermore, we put the focus on clue
phrases. These are little words and phrases that help
the learner in choosing the right option (gerund or
to-infinitive). To implement the computational anal-
ysis of the linguistic phenomenon, Constraint Gram-
mar is employed (Karlsson, 1990). Last but not least
we report on the integration of Constraint Grammar
in the enterprise architecture of the new WERTi, in-
cluding the realization of the named activities using
the Google Web Toolkit (GWT).

2 Linguistic Patterns

2.1 The To-infinitive

The to-infinitive is easy to recognize on the surface.
As the name says, it consists of the wordto and
the uninflected form of a verb. However, the to-
infinitive is seen in a more restricted sense in gram-
mar teaching. Grammar books such as Ungerer et al.
(1989) distinguish between the to-infinitive used in
constructions such as the going-to-future and other
uses. The variant we are mainly concerned with is
the one occurring as subject or object argument to
other verbs. A few example cases:

He wantsto attendthe lectures today.

Will the teacher be ableto explain these
facts?
Students areto drink beer.

2.2 The Gerund

What is a gerund? This question is easily answered
by any learner grammar book, but after a closer
look, the situation turns out to be more complicated.
Obviously, not every verb form ending ining is a
gerund. The simpler cases are the progressive forms
and the going-to future such as those in:

He waswriting a morphological analyzer.
What are youdoinghere?
They aregoing to do their homework.

Linguistically more debated is the distinction be-
tween the participle and the gerund. Huddleston and
Pullum (2006, p. 1120) refute the existence of a ba-
sis for this distinction: “We call this form gerund-
participle to reflect the fact that it covers the ground
of both gerunds and present participles in other lan-
guages.” Richardson (1991) points out that the par-
ticiple can occur in a “adverbial function”, adding
information to the verb, as well as in a “nominal
function”, while the gerund can only can function
in the nominal sense.

She started to run,leaving the homework
undone.

While in the above example, the phrase holding the
-ing form is a participle providing a closer specifica-
tion to the verb, the very same phrase could be used
as a gerund:

He imaginedleaving the homework un-
done.

Richardson concludes that “distinguishing a gerund
-ing form and a participle -ing form with distinct
paradigms adds unnecessary complexity (i.e. to the
grammar).” The production of gerunds and partici-
ple certainly works with the same mechanics. Lin-
guists are debating about whether the distinction
makes sense at all.

For practical reasons in ICALL, we need this
distinction: the gerund -ing form can be used ex-
changeable with the to-infinitive, while the partici-
ple -ing form cannot. Hence if the learner is to de-
cide whether to use the to-infinitive or the gerund

in an activity, we must ensure that the task does
not mutate to an to-infinitive vs. participle activity.
Therefore we must make the distinction in the very
same way as learner grammars such as Ungerer et al.
(1989) are making it; in the given scenario there is
no such thing as the “gerund-participle” of Huddle-
ston and Pullum. Instead, it is assumed that there
is a clear-cut line between the gerund and all other
forms, including the participle and the progressives.

2.3 Clue Phrases

2.3.1 Towards a Definition

Clue phrases play a role in language learning and
in prescriptive grammar1. Clue phrases work in this
manner: the question whether to use the gerund or
the to-infinitive is often answered by certain little
words or phrases being present, entailing the an-
swer. These phrases simply are patterns of usage.
Furthermore, they are irrelevant for most descrip-
tive views on the gerund and the infinitive. In the
work presented, we distinguish two basic types of
clue phrases, with the first one exhibiting four sub-
types:

• Verbs that take as an argument either to-
infinitives or gerunds, in some cases both.

– Always gerund.

– Always to-infinitive.

– Both, the meaning is the same.

– Both, but the meaning differs.

• Fixed expressions that are always followed by
the gerund.

Most learner grammars include lists, e.g. Alexan-
der (2007, p. 315). The learner can infer rules from
this information, such as ‘always use the gerund af-
ter appreciate’ or ‘always use the to-infinitive after
want’.

Although we need to make the fine-grained dis-
tinction presented above for computational process-
ing, it is not represented on the user interface level.
We consider it to be sufficient to highlight clue

1Huddleston and Pullum (2006, p. 5) use the term “usage
manuals” instead. Prescriptive grammars are meant to give ad-
vise to those who are uncertain about language use, while de-
scriptive grammars in linguistics are aiming to describe the lan-
guage use of those who are certain about it.

phrases as such, letting the learners make the con-
nection to the intended usage themselves.

2.3.2 Grammar Books vs. Language Use

Prescriptive grammars run the risk of being victims
of “taste tyranny” (Huddleston and Pullum, 2006,
p. 7). Is the grammar book’s advise of using the
gerund vs. the to-infinitive really compatible with
the English of the real world? For learners writing
texts, this might be irrelevant as they simply need
something to hold on to. But for processing free
text, as the described piece of software is to do it,
it is questionable whether clue phrases can be relied
on if their usage is not confirmed by real world usage
patterns.

In a corpus-based experiment, we tested 71 verbs
taken from grammar books listing them as clue
phrases. The classification into the four subtypes
discussed in the previous section was applied as
stated in the books. We then performed auto-
mated queries to the British National Corpus (BNC,
Burnard 2007). Four patterns were queried for each
verb:

1. verb+ to + infinitive

2. verb+ preposition to + infinitive

3. verb+ -ing form

4. verb+ preposition + -ing form

The first category produces virtually no hits in the
corpus, so it can be disregarded. Furthermore, some
verbs are low-frequency words. All verbs occurring
less than 25 times for all three remaining cases to-
gether were dropped, leaving 63 observations. The
results are depicted in figure 1; the dots accumulat-
ing in the corners indicate that there actually is a
number of verbs being used with either the gerund or
the to-infinitive. This insight of course is restricted
to the language use as it is represented by the BNC.

Equipped with these results, we tried to re-
classify all verbs on the basis of their number of
occurrence. If averb+to+infinitive pattern occurred
more than 90% of the patterns 1–3 given above and
if the corresponding -ing form patterns occurred less
than 25 times, we classified the verb as ‘always with

Figure 1: 63 verbs used with to-infinitive vs. gerund in
the British National Corpus.

to-infinitive’. Seen from the other direction, we at-
tached the ‘always with gerund’ attribute. Verbs be-
ing situated between the 90% lines were labeled as
‘both gerund and to-infinitive’. The rest was de-
clared ‘undecidable’.

From our classification and the classification
given in the grammar books, we computed Cohen’s
Kappa statistics for inter-rater agreement. It com-
putes toκ = 0.314, a value indicating only debat-
able agreement between the (descriptive) corpus ob-
servations and the (prescriptive) grammars.

From these results we conclude that for retrieving
reliable verbs usable as clue phrases, more research
must be done. For now, we retreat to the ideal world
of ‘should-be language’ found in learner grammars.

3 Natural Language Processing

3.1 Standard Tagsets provide only -Ing Forms

The new WERTi system uses a POS-tagger with
a statistical model trained using the Brown Corpus
(Francis and Kucera, 1979). Consequently, the anal-
ysis available is based on the Brown Corpus tagset.
Neither this tagset nor the CLAWS tagset nor the
Penn Treebank Tagset distinguish between the -ing
forms of the verb (Leech et al., 1994; Santorini,
1990). May this fact be due to the linguistic con-
victions of those who created the tagsets or may it
be a technical choice in favor of simplicity, the en-
deavor described in the presented paper supports the

design decision to leave aside the difficulties of dis-
tinguishing -ing forms in corpus annotation.

Nevertheless, the distinction needs to be made for
the given purpose. We decided to implement a rule-
based approach on the basis of Constraint grammar.

3.2 Constraint Grammar

3.2.1 The Original

Parsing always involves dealing with ambiguous
sentences. Traditional parsers produce the more
parse trees per sentence, the more rules the grammar
includes. Constraint Grammar, initially described
by Karlsson (1990), turns the entire affair upside
down: a Constraint Grammar parser starts out with
all ambiguities that are known, subsequently elimi-
nating as many of them as possible. In an ideal world
with an ideal grammar, there is only one single anal-
ysis remaining per sentence in the end. There is an-
other point to mention: Constraint Grammar fosters
the use of partial or shallow analysis. If the an-
notation of a few words or phrases in a sentence
is enough to produce the required analysis, no full
parse and no large-coverage grammar of the lan-
guage in question is required.

3.2.2 Introducing Ambiguity only to Resolve It

Our approach differs slightly from the procedure
described by Karlsson (1990). While he includes
morphological analyses and their disambiguation,
we start out with readily available disambiguated
POS-tagger output. However, since the tagset does
not distinguish -ing forms, ambiguity is introduced
for each -ing form. Initially, the parser is con-
fronted with three possible readings: progressive
form, gerund, participle. For the word formdoing,
we additionally introduce readings for going-to fu-
ture and going-to future in the past.

The to-infinitives are trivial to handle: uninflected
forms are tagged as such and the infinitivalto is as-
signed its own private tag.

It is important to keep in mind that in ICALL, pre-
cision must be focussed. It is not elegant to miss
occurrences of gerunds in the analysis but it is inex-
cusable to declare an -ing form as a gerund that in
fact is something else. So if it is possible to safely
identify the going-to future as a first step, this re-
duces chances to do wrong later on. Hence our rules
are ordered to detect linguistic phenomena with as-

SUBSTITUTE ("" VBG) ("---remove---"
VBG) (VBG);

APPEND ("" VBG GERU) (VBG);
APPEND ("" HVG GERU) (HVG);
APPEND ("" BEG GERU) (BEG);
APPEND ("" VBG PROG) (VBG);
APPEND ("" HVG PROG) (HVG);
APPEND ("" BEG PROG) (BEG);
APPEND ("" VBG PART) (VBG);
APPEND ("" HVG PART) (HVG);
APPEND ("" BEG PART) (BEG);
REMOVE ("---remove---" VBG);
"<going>" APPEND ("" VGB GOFU)

(VBG);
"<going>" APPEND ("" VGB GOFUPA)

(VBG);

Figure 2: Introducing multiple readings3 for -ing forms .

cending difficulty: going-to future (in the past), pro-
gressive forms, participles, gerunds. If all stages fail,
we know that no analysis of the given -ing form was
possible with these rules–which is still better than
casting a false positive gerund.

The analysis conducted is kept as shallow as pos-
sible. For example, an argument of a verb is simply
represented by ‘everything that is not a verb and not
a clause delimiter.’2 After being run through the dis-
ambiguation section, there may still be words with
more than one reading. For these ambiguous cases,
all readings are removed and a simple reading say-
ing ‘this is still ambiguous’ is introduced. While the
grammar consists of 98 rules altogether, the disam-
biguation rules for -ing forms sum up to only 32.
Example pieces from the grammar are shown in fig-
ures 2 and 3.

3.2.3 Clue Phrase Detection

Since clue phrases are to be presented by the learner,
they must be detected by the program. This is done
using the verbs named in section 2.3.2 as a sure-fire
list. In English, these verbs are always situated pre-
ceding the occurrence of the gerund or to-infinitive.
However, there can be additional modifiers in be-

2Pragmatic definition of a clause delimiter: comma, period
or a word tagged as a subordinate conjunction.

3The empty string ("") denotes an empty lemma which is
required for technical reasons. Since we are not using any
lemmatization at that stage of processing, they are all empty.

LIST _3P_PRES = VBZ BEZ DOZ VHZ;
LIST _3P_PAST = BEDZ DOD HVD VBD;
SELECT (GERU) (+1* _3P_PRES BARRIER

_COMMA_OR_SUBORD OR
_ANYVERB_ANYFORM);

SELECT (GERU) (+1* _3P_PAST BARRIER
_COMMA_OR_SUBORD OR
_ANYVERB_ANYFORM);

SELECT (GERU) (+1* (MD) BARRIER
_COMMA_OR_SUBORD OR
_ANYVERB_ANYFORM LINK +1 _UNINF);

Figure 3: Example rules for selecting gerunds from am-
biguous readings: the gerund with possible arguments of
its own as a subject 3rd person argument to verbs.

tween. This is shown in the following example with
the clue phrasekeptsuggesting the use of the gerund
waiting:

Hekeptherwaiting for too long.

It turns out that these long-distance clue phrases are
problematic in some situations. The ‘everything that
is not a verb and not a clause delimiter’-strategy
(cf. section 3.2.2) for identifying arguments of verbs
fails in the case of gerunds or to-infinitives being ar-
guments to nouns or other POS. In the following ex-
ample, the occurrence ofdeniesis analyzed as a clue
phrase. This is wrong, because the gerund construc-
tion (of) writing actually attaches tohabit.

The authordenies his habit of writing
morbid books.

For fixed expression clue phrases, we use a simple
list of contexts taken from Ungerer et al. (1989).
Elaborate information on these expressions is rare
in learner grammars so further research should take
into account harvesting such expressions by cautious
corpus exploration.

ADD (GER-B) (GERU) (0C (GERU));
ADD (GOI-B) (GOFU) (0C (GOFU));
ADD (GOP-B) (GOFUPA) (0C (GOFUPA));
ADD (PRO-B) (PROG) (0C (PROG));
ADD (PAR-B) (PART) (0C (PART));

Figure 4: Marking chunks for all disambiguated -ing
forms: unlike for the to-infinitive, these are all single-
token chunks.

3.2.4 Marking Chunks

After the disambiguation step, our constraint gram-
mar inserts chunk tags marking ranges that are even-
tually used for presenting the linguistic phenomena
to the user. These chunk tags consist of ‘begin’ and
‘inside’ tags such asINF-B andINF-I for the to-
infinitive andCLU-B andCLU-I for clue phrases.4

There are three basic types of chunks: to-
infinitives, gerunds, and clue phrases. The clas-
sification of other -ing forms plus ambiguous -ing
forms is marked with chunks as well. It can be used
for debugging purposes.

Ranges spanning a to-infinitive and a clue phrase
or a gerund and a clue phrase are marked as
RELEVANT chunks as those are to be presented to
the user in all three activities. Although this type of
annotation allows overlapping spans, we stick to the
convention that aRELEVANT span must contain ex-
actly oneCLU (clue phrase) span and either oneINF
(to-infinitive) orGER (gerund) span. Apart from that
there are no other nested spans.

With this strategy, the entire linguistically mo-
tivated application logic is loaded into the con-
straint grammar.5 An example for marking chunks
is shown in figure 4.

4 Processing in WERTi

4.1 The Architecture of WERTi

The new WERTi as developed by Dimitrov (2008)
makes use of three enterprise technologies: Java
Servlets together with the Apache Tomcat Servlet
Container6 provide the basis on which Apache
UIMA (Ferrucci and Lally, 2004) and the Google
Web Toolkit (GWT)7 operate. The required NLP
pipeline is constructed as UIMA components, while
the user interface as well as the client-server com-
munication is implemented using GWT.

Figure 5 depicts the data flow in WERTi, omit-
ting the details of client-server communication. The
URL Fetcher retrieves the web page to process, the
NLP pipeline in UIMA produces all analyses re-

4This strategy is inspired by the IOB (inside, outside, begin)
chunk tagging introduced by Ramshaw and Marcus (1995).

5Apart from POS tagging as a given step of preprocessing
and the lemmatization of relevant -ing forms, see section 4.4.

6http://tomcat.apache.org/
7http://code.google.com/webtoolkit/

http://tomcat.apache.org/
http://code.google.com/webtoolkit/

UIMA

GWT

URL Fetcher

HTMLAnnotator

GenericRelevanceAnnotator

LGPTokenizer

SentenceBoundaryDetection

LGPTagger

vislcg3Annotator

TokenEnhancer

vislcg3ChunkEnhancer

baseFormPostEnhancer

ColorizeActive PresentationCloze Test

Figure 5: Simplified representation of the data flow in
WERTi, gray elements are part of the base system intro-
duced by Dimitrov (2008).

quired for the desired ICALL activities, which then
are on the user interface side implemented as GWT
modules. Elements present in the base system are
shown in gray.

The initial modulesHTMLAnnotatorandGener-
icRelevanceAnnotatorensure that only those parts
of the web page that contain the actual text are pro-
cessed. This is followed by tokenization, sentence
boundary detection and POS tagging with the Ling-
pipe Tagger.8

Thevislcg3Annotatoris a generic wrapper around
the vislcg3 Constraint Grammar parser9. The
vislcg3ChunkEnhanceris more specific: it expects
chunk tagging as described in section 3.2.4 to have
happened before and prepares the insertion of GWT
modules for the desired activities. ThebaseForm-
PostEnhancerextends the output of the previous
module by lemmata where needed.

Last but not least, three GWT modules implement
the actual ICALL activities. In our scenario, all three
modules make use of the very same linguistic anal-
ysis and the very same preparation conducted by the
enhancer modules. Other activities may require to
branch the data flow at a much earlier step, e.g. by
making use of a different vislcg3 grammar that en-
tails the use of another specific enhancer module.

4.2 A VislCG3 Wrapper for Preprocessing

vislcg3 is a constraint grammar compiler developed
by Tino Didriksen and Eckhard Bick at the Syd-
dansk Universiteit. It was fashioned after the older
CG-2 compiler presented in Tapanainen (1996) and
is currently used as the computational core of the
Visual Interactive Syntax Learning project (Bick,
2001).

For our purposes, we needed a UIMA wrapper
around the standalonevislcg3program. It converts
UIMA token annotations into the text format ex-
pected byvislcg3and feeds it to the program. The
output ofvislcg3 is then parsed and put into UIMA
data structures so that further analysis components
can draw on it. Multiple readings are realized as a

8Dimitrov (2008) reports using the tokenizer of Stanford
Tagger and TreeTagger as tagger. Concerning the current sta-
tus of the system, this information is outdated. Both tag-
ger and tokenizer are currently those of the Lingpipe toolkit.
http://alias-i.com/lingpipe/

9http://beta.visl.sdu.dk/cg3.html

http://alias-i.com/lingpipe/
http://beta.visl.sdu.dk/cg3.html

feature of a token in the UIMA type system and rep-
resented as lists of strings where one element corre-
sponds to what is called a ‘tag’ in constraint gram-
mar.

4.3 Enhancing HTML Pages

The re-implementation of WERTi by Dimitrov pro-
vides the annotation type of generic enhancements.
This type ranges over a certain span of the HTML
document in question and further allows the associa-
tion of arbitrary HTML tags with a certain enhance-
ment.

To stick with this approach, we implemented the
vislcg3ChunkEnhancerwhich relies on annotations
made by the wrapper described above. In our vislcg3
grammar we insert chunk tags as described in sec-
tion 3.2.4. These chunks are identified by the chunk
enhancer and for every chunk a new enhancement is
constructed and added to the annotations.

We insert generic HTMLspan tags that are asso-
ciated with special IDs in order to be able to identify
them later on the client side. The client module can
then decide on a visualization strategy that suits the
intended activity.

4.4 Lemmatization as a Step in Post-processing

Activities such as cloze tests may additionally re-
quire the base form of the verb, e.g. in order to
display it to the user as instruction. Consequently,
lemmatizing functionality was needed which we im-
plemented with the help of themorphaanalyzer de-
scribed in Minnen et al. (2001).

In the case of the to-infinitive, deriving the base
form is unneeded as it is already present. For the
gerunds, we feed the -ing form tomorphaand add
the output to the enhancement created by the chunk
analyzer. As a result, the activity module can draw
on this information.

4.5 Activities implemented using the Google
Web Toolkit

Three activities were realized using the same under-
lying analysis:

• A Colorize activity that marks occurrences of
gerunds and to-infinitives and their respective
clues.

• An Active Presentationthat requires the learner
to identify clues by clicking on them after being
presented with gerunds and to-infinitives.

• A Cloze (fill-in-the-blank) exercise that high-
lights the clues and prompts the learner for the
correct forms.

In each case the same HTML document is offered to
the client browser but the JavaScript Code generated
by GWT differs for each activity. As the analysis
is done on the server side, all the client code needs
to do is substitute certain tags in the HTML for the
desired visualization. For example, in theColorize
activity, we just added a certain style to thespan
tags already there in order to make the tokens appear
in a different color.

The most complicated activity isClozeas it needs
to check the user input and provide visual feedback.
Here we built on a reusable component already pro-
vided in WERTi which encapsulates the functional-
ity of a fill-in-the-blank box.

5 Development and Testing

While we constructed the grammar we worked with
experimental sentences that were constructed manu-
ally in order to present typical cases that our gram-
mar had to deal with. The grammar grew in parallel
to the software components that were needed to inte-
grate the approach in WERTi. Since all the linguistic
intelligence is in the grammar, the other components
could be developed independently and would then
profit from the grammar improvements.

We did not conduct a full-scale evaluation exper-
iment on our experiments. For a meaningful evalua-
tion, one would need to deploy the system in a real
English Language Teaching environment which we
hope to do in the near future.

Nevertheless, we naturally tested our system in
the process of development. A problem one imme-
diately notices is that not all sites contain sufficient
occurrences of the phenomena, so one needs to se-
lect specific sites known to contain gerunds10 (the
to-infinitive is far more frequent).

10We ran most of our tests on texts from the
‘Young Readers‘ section of classicreader.com, see
http://www.classicreader.com/browse/3/title/

http://www.classicreader.com/browse/3/title/

Our tests show that the system is able to deal
with most typical occurrences, such as “I’ve kept her
waiting”. It fails if the tagger (which we rely on)
misses fixed expressions, as in “bathingmachines”
and mistakenly marks them as possible gerunds. In
general, tagging accuracy highly influences the qual-
ity of our analysis.

There is also the problem of limited context we
use in our grammar rules. Then again, if one is to
cover the harder cases, the grammar becomes sig-
nificantly more complicated because long-distance
dependencies within a sentence need to be taken
into account and the functions of subject and object
would need to be assigned. Within the scope of this
project, such a thorough analysis was not possible.

6 Conclusion

We have discussed the design and implementation
of ICALL activities on authentic texts concerning
the contrast between gerunds and to-infinitives. Our
preliminary tests done during development show
promising first results but a full-scale empirical eval-
uation is needed. Without deployment in a real
learning environment with a sufficient number of
users, meaningful analysis of the results is hardly
possible.

As detailed in section 2.3.2 some clue phrases
cannot really be justified as reliable indicators of
either to-infinitive or gerund. Consequently, more
data-driven (e.g. corpus-based) research is needed
in order to end up with better clues. The mismatch
between grammar books and real-world language is
a hindrance in developing consistent ICALL activi-
ties for language learners.

Another problem is the limited frequency of the
gerund. In many texts, gerunds are simply not used,
for stylistic or other reasons. Such texts will then
produce disappointing results for learners. Further
research should include pre-selecting texts based
on occurrences of certain constructions, such as
gerunds, from the domain of interest to the learner.

Nevertheless, several important points can be
drawn already from this project. Constraint Gram-
mar has proven to be well-suited to ICALL activi-
ties with authentic texts because it does not attempt
to cover a language (fragment) with regard to com-
pleteness. As a result, one can implement exactly

the rules one needs for an activity and no others.
Furthermore, we have seen that it is feasible to im-

plement ICALL activities on authentic texts within a
reasonable time span using the new WERTi system.

Acknowledgements

We would like to thank Aleksandar Dimitrov for the
invaluable and constant support he provided during
the development of our software.

References

L. G. Alexander, 2007.Longman English Grammar.
Longman, London.

Luiz Amaral, Vanessa Metcalf and Detmar Meur-
ers, 2006. Language Awareness through Re-use
of NLP Technology. InPre-conference Work-
shop on NLP in CALL – Computational and Lin-
guistic Challenges. CALICO 2006, University of
Hawaii.

Eckhard Bick, 2001. The VISL System: Research
and applicative aspects of IT-based learning. In
Proceedings of NoDaLiDa (Uppsala).

Lou Burnard, 2007.Reference Guide for the British
National Corpus. Oxford University Computing
Services, Oxford.

Aleksandar Dimitrov, 2008. Rebuilding WERTi:
Providing a Platform for Second Language Ac-
quisition Assistance. Technical report, Seminar
für Sprachwissenschaft, Universität Tübingen.

David Ferrucci and Adam Lally, 2004. UIMA: An
architectural approach to unstructured informa-
tion processing on the corporate research environ-
ment. Natural Language Engineering, 10(3–4),
327–348.

W. N. Francis and H. Kucera, 1979.Brown Corpus
Manual. Department of Linguistics, Brown Uni-
versity, Providence, Rhode Island.

Rodney Huddleston and Geoffrey K. Pullum, 2006.
The Cambridge grammar of the English languag.
Cambridge University Press, Cambridge, 4 edi-
tion.

Fred Karlsson, 1990. Constraint grammar as a
framework for parsing running text. InProceed-
ings of the 13th conference on Computational lin-

guistics. Association for Computational Linguis-
tics, Morristown, NJ, USA, pp. 168–173.

Geoffrey Leech, Roger Garside and Michael Bryant,
1994. CLAWS4: the tagging of the British Na-
tional Corpus. InProceedings of the 15th Inter-
national Conference on Computational Linguis-
tics (COLING 94). Kyoto,Japan, pp. 622–628.

Guido Minnen, John Carroll and Darren Pearce,
2001. Applied morphological processing of En-
glish. Natural Language Engineering, 7(3), 207–
223.

Lance A. Ramshaw and Mitchell P. Marcus,
1995. Text Chunking Using Transformation-
Based Learning. In David Yarovsky and Kenneth
Church (eds.),Proceedings of the Third Workshop
on Very Large Corpora. Association for Compu-
tational Linguistics, Somerset, New Jersey, pp.
82–94.

Andrew Richardson, 1991. A Grammatical Descrip-
tion of the English Gerund and Related Forms.
Ph.D. thesis, University of Essex.

Beatrice Santorini, 1990.Part-of-Speech Tagging
Guidelines for the Penn Treebank Project. Tech-
nical Report MS-CIS-90-47, Department of Com-
puter and Information Science, University of
Pennsylvania.

Pasi Tapanainen, 1996.The Constraint Grammar
parser CG-2. Number 27 in Publications of the
Department of General Linguistics. University of
Helsinki.

Friedrich Ungerer, Peter Pasch, Peter Lampater and
Rosemary Hellyer-Jones, 1989.Grundgram-
matik: Ausgabe f̈ur Gymnasien. Learning En-
glish. Ernst Klett Schulbuchverlag, Stuttgart, Ger-
many, 1 edition.

	Introduction
	Linguistic Patterns
	The To-infinitive
	The Gerund
	Clue Phrases
	Towards a Definition
	Grammar Books vs. Language Use

	Natural Language Processing
	Standard Tagsets provide only -Ing Forms
	Constraint Grammar
	The Original
	Introducing Ambiguity only to Resolve It
	Clue Phrase Detection
	Marking Chunks

	Processing in WERTi
	The Architecture of WERTi
	A VislCG3 Wrapper for Preprocessing
	Enhancing HTML Pages
	Lemmatization as a Step in Post-processing
	Activities implemented using the Google Web Toolkit

	Development and Testing
	Conclusion

