
Constraint Grammar in Dialogue Systems

Lene Antonsen
University of Tromsø

Norway
lene.antonsen

@uit.no

Saara Huhmarniemi
University of Tromsø

Norway
saara.huhmarniemi

@helsinki.fi

Trond Trosterud
University of Tromsø

Norway
trond.trosterud

@uit.no

Abstract

This article discusses and gives examples
of the use of Constraint Grammar as parser
engine in parser-based CALL programs
for North Sámi. The parser locates gram-
matical errors in a question-answer pro-
gram and a dialogue program, and is also
used for navigating inside the dialogue.

1 Introduction

The present paper discusses the use of Constraint
Grammar (vislcg3) in two different dialogue sys-
tems for learning North Sámi: Vasta – a QA-drill
with open questions, and Sahka – a dialogue be-
tween program and user within a scenario. The
underlying pedagogical goals for both programs
are exercising verb inflection, choosing the correct
case, and extending the vocabulary of the student.

Constraint Grammar (CG) rules are used for
adding tutorial feedback about grammatical er-
rors, navigating in the Sahka-dialogue based on
the user’s answers, and for identifying parts of the
user’s answer for use in variables later in the dia-
logue.

Our leading idea was to utilize our existing anal-
yser for Sámi when developing pedagogical pro-
grams for language instruction. With vislcg3 we
had the possibility of making an intelligent tutor-
ing system with sophisticated error analysis where
student tasks could go beyond multiple-choice or
string matching algorithms.

Sámi is a language with complex morphology,
and it demands much practising before the student
reaches necessary skills. However, since Sámi is
a minority language, it is common that Sámi stu-
dents do not receive enough opportunities to prac-
tise the language in a natural way. There is also
a lack of teaching materials. Therefore, programs
accessible on the Internet may be a supplement to
the instruction given at school or in universities.

In the following section we describe the basic
algorithm for generating questions for Vasta and
analysing user’s input in Vasta and Sahka. Section
3 shows how CG is used for navigation in the dia-
logues in Sahka, and section 4 shows how tutorial
feedback is given with the help of CG rules. In
section 5 we present an evaluation of how the sys-
tem works in real life. The final sections present
future perspectives and a conclusion. The pro-
grams are available on a web-based learning plat-
form at internet (http://oahpa.uit.no/),
which contains six programs (Antonsen, Huhu-
marniemi and Trosterud, 2009).

2 The system

2.1 Basic grammatical analysis

The basic grammatical analysis of North Sámi is
done with finite state transducers (fst) and a con-
straint grammar parser made at UiT. The relevant
resources are the following:

• a morphological fst analyser/generator, com-
piled with the Xerox compiler xfst (Beesley
and Karttunen, 2003).

• a morphological disambiguator based on con-
straint grammar with 3300 manually writ-
ten rules and a syntactic analyser which adds
grammatical function (vislcg3).

The CG parser framework shows extraordinary
results for free-text parsing, and Vislcg3 is also
used in the VISL-suite of games developed at Syd-
Dansk Universitet for teaching grammatical anal-
ysis on the Internet (http://visl.sdu.dk/).
One of their programs accepts free user input
in some of the 7 supported languages. The in-
put is analysed or changed into grammar exer-
cises (Bick, 2005).

Figure 1: A generated question and a user’s answer in Vasta. (”Did the boy ride yesterday?” ”No,
yesterday he does not.”)

2.2 Sentence generator

The question-answer drill Vasta consists of ran-
domly chosen questions – yes/no-questions and
wh-questions. In order to be able to create a large
number of potential tasks, we implemented a sen-
tence generator. With the generator we can easily
offer variation to the user, instead of tailoring ev-
ery task with ready-made questions.

A template question matrix contains two types
of elements: constants and grammatical units
for words selected from the pedagogical lexicon,
constrained by semantic sets. The pedagogical
lexicon forms a collection of about 2400 words
that are considered relevant for the learners of
North Sámi in schools and universities. The
dialectal variation is taken into account in the
lexicon as well as in the morphological generator,
and the user may choose eastern or western dialect
for the tasks. The sentence generator handles
agreement, e.g. between subject and the main
verb.

Figure 2 shows a question template in which
the main verb (MAINV) is fixed to indicative past
tense, but the person and number inflection may
vary freely. In Figure 1 on page 2 the same tem-
plate is realised as a task in Vasta. The user’s an-
swer triggers a feedback message about the tense
of the main verb. Since the content of the MAINV
and SUBJ are drawn from the lexicon, the exam-
ple template may generate around 15 000 different
questions.

The question matrices are marked for level,
corresponding to the level option chosen by the

Figure 2: A question template (MAINV question-
particle SUBJ yesterday).

user, e.g. the basic level 1 has only indicative and
no past tense. Because of this we have to fix the
inflections in every template to some extent, and
there are as many as 111 matrix questions.

2.3 The analysing process

Both the question and the answer are analysed
with the morphological analyser and then the
result is postprocessed to cg3-format and passed
to the CG3 rule component (cf. Figure 3). The
question and user’s answer pairs are merged,
and analysed as one text string. The question
mark in the question is exchanged for a special
symbol (”ˆqst” or ”ˆsahka” QDL), as shown in the
analysed question-answer pair in Figure 5 on page
4. We use these symbols, rather than the question
mark itself, in order not to introduce a sentence
delimiter in the analysis, since we want to refer
to the question and the answer separately in the
rules (left or right side of the QDL), but also treat

the question-answer part as one unit. Many of
the constraints are based upon the grammar and
semantics of the question – e.g. the tense and
person inflection of the verb, the case of NP in the
answer and so on. The question itself restricts the
possible interpretation of the input.

Analysis:

morpho-
logical

analysis
(sme-norm.fst)

post
processing
lookup2cg

disambiguating,
error detection,
interpretation
ped-sme.cg3

navigation
instruction

grammar
feedback

machine
question

user’s
answer

Figure 3: Schematical view of the process.

The vislcg3-rule set consists of two parts. The
first part is a rule set, which disambiguates the
user’s input only to a certain extent. The rule set
is relaxed compared to the ordinary disambigua-
tor, in order to be able to detect relevant readings
despite of a certain degree of grammatical and or-
thographic errors in the input. The second part of
the rule set contains rules for giving feedback to
grammatical errors, and rules for navigating to the
next question or utterance in the dialogue, based
on the user’s answer. In this paper, we concentrate
on the rules for giving feedback for the user and
navigating in the dialogue.

3 Navigating in the dialogues

In the Sahka dialogues the main goal has been
to create a feeling of a natural dialogue. One of
the ways to achieve that goal is reacting to the
user’s input. When the input is morphologically
analyzed, the CG rules are used for assigning tags
to the question-answer pairs, which are then used
for selecting appropriate questions and navigating
in the dialogue. The dialogues deal with differ-
ent topics. The “first meeting dialogue”, for ex-
ample, treats topics such as age, family, working
place/school, car and so on. Navigation between
the topics is achieved by recognizing and tagging
the content of the user’s answer in CG rules and
providing the analysis to the Sahka-engine. In ad-
dition, it is possible to assign a target tag to cer-
tain information types; the system may e.g. collect
name, car brand and so on, and use it as a variable

in the follow-up questions.
The CG rules used in the dialogue processing

may be divided into two types: general rules that
may target any question-answer pair and question-
specific rules that are tailored for a specific ques-
tion.

3.1 Rules for specific questions

Since the functionality of Sahka is more depen-
dent upon correct analysis of the content of user’s
answer, the questions in the dialogues do not vary
freely as in Vasta. Every question is a text string
and has its own unique name assigned to the QDL.
This enables writing question specific CG rules
and accessing the question from other questions.

Figure 4: From Sahka. (”In which room should we
place the TV?” ”We should place it in the toilet.”
”That is not a good idea. Try again.”)

Consider an example dialogue from Sahka. In
Figure 4 the setting is a visit to a friend who has
moved into a new flat, and needs a helping hand
with moving the furniture. We have come to the
third question and the next question in the dialogue
is selected depending on the answer. In Figure
5 the analysis assigns two navigation tags to the
question-answer pair. The rule for assigning the
tag &dia-hivsset is shown in Ex. (1), the other one
is explained in section 3.2.

(1) MAP (&dia-hivsset) TARGET QDL IF
(0 (where place TV))
(*1 (”hivsset”) BARRIER Neg OR ROOMS) ;

This special rule for the question with the iden-
tifier where place TV adds the tag &dia-hivsset
to the QDL in the question-answer pair if the
answer contains the word hivsset (toilet). The
barrier prevents the rule from working if the
negation verb or a word from the set denoting
rooms intervenes between the QDL and the word
hivsset. The barrier will prevent assigning the tag
to answers, which negate the possibility of putting
the TV to the toilet, or giving the toilet as only

one of more possibilities.

Figure 5: Assignment of navigation tags is done
together with the disambiguation.

Figure 6: From the a dialogue file. (”In which
room should we place the TV?” Alt. ’toilet’: ”That
is not a good idea. Try again.” Default: ”We carry
it there together.”)

When the Sahka-engine reads the CG-output, it
recognizes the dia-tag and searches for a next in-
struction based on the tag. Every question con-
tains links to alternative questions that are selected
based on the recognized tag. In addition, there
is a default link in case a navigation tag was not
present in the CG-input. In Figure 6 there are two
alternative links for the answers to the question in
Figure 5. One of them is connected to the &dia-
hivsset tag and will give the answer ”That is not
a good idea. Try again.” The other link is default
and leads to the next question in the dialogue.

Another example of a question specific dialogue
navigation rule comes from yes/no-questions
where the user often provides more information
than what was asked for. E.g. to the question ’Do
you have children?’, the user can answer ’Yes, I

have two children.’ In the dialogue, the next ques-
tion would normally be ’How many children do
you have?’. To avoid this question when the in-
formation was already provided, we have a pass-
tag for omitting the next question. In this case,
the pass-tag is added to the question with identi-
fier do you have children if the answer contains a
numeral, as shown in example (2):

(2) MAP (&dia-pass) TARGET QDL
(0 (do you have children) LINK *1 Num) ;

Let us consider a couple of examples showing
how the dialogue may be branched to different
questions and topics. In Figure 7 there are differ-
ent follow-up questions for the answer to “What
kind of car do you have?” If the car brand is in the
lexicon, the system picks up the car type and uses
it in a variable in the next question, e.g. ”Is Ford
a good car?”, and if it is not in the lexicon (it can
e.g. be a spelling error or a joke from the user),
the next question will be “Is it a car?”. There is
also an alternative link for a negative answer (“Do
you want to buy my car?”), and the default leads
to a comment, which closes this topic.

Figure 7: Alternative links due to the answer of
’What kind of car do you have?’.

Figure 8: Alternative branches due to the age of
the user. The question is ’How old are you?’.

Whenever a topic is closed, the dialogue pro-
ceeds to the next topic. For example, an answer
from the user about her age will induce a tag which
is used for navigating to different branches of the
dialogue based on the age of the user, as in Figure
8. The tag for age is assigned with a regular ex-

pression inside a CG rule, as in the examples (3),
(4) and (5):

(3) MAP (&dia-adult) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([2-9][0-9])”r)) ;

(4) MAP (&dia-young) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([1][0-9])”r)) ;

(5) MAP (&dia-child) TARGET Num
(*-1 QDL LINK 0 (How old are you))
(0 (”([0-9])”r)) ;

Users in the age-group below 20 proceed to a
topic about going to school, while the older users
are asked about their work. The question contains
a default link as well, since some users have fun
telling they are 1000 years old.

3.2 General rules

Most of the cg3-rules are general rules that apply
to all question-answer pairs. Consider example
(7), which generalizes over the question marker set
in (6):

(6) LIST TARGETQUESTION-ACC = (”mii” Acc)
(”gii” Acc)(”galle” Acc) (”gallis” Acc) ;

(7) MAP (&dia-target) TARGET NP-HEAD + Acc IF
(*-1 QDL BARRIER S-BOUNDARY LINK *-1
TARGETQUESTION-ACC LINK NOT 0 Num)
(NEGATE *1 (N Acc) BARRIER VERB OR
CC)(NOT 0 NOTHING) ;

This is a general target rule for questions,
which requires an answer in the accusative. S-
BOUNDARY is a set of words and tokens which
marks the end of the (sub)sentence. NOTHING
is a set of indefinite pronouns like ”nothing” and
”nobody”. There are similar rules for other cases.

There are also general rules for tags marking
whether the answer is interpreted as affirmative or
negative, as in Ex. (8):

(8) MAP (&dia-pos) TARGET QDL IF
(*-1 Qst OR go)(NOT *1 Neg);
MAP (&dia-neg) TARGET QDL IF
(*1 Neg BARRIER S-BOUNDARY);

In Sámi a yes-no question is indicated by a
question particle ”go”, which can be a separate
word or cliticized to the word to the left, which
then gets a Qst tag in the analysis.

3.3 Storing information

It is useful to store some information about the
user during the dialogue, such as name and age
of the user. This information may be used in ques-
tions later, and give an impression of familiarity.

These are implemented using special tags, such as
in the examples (9) and (10):

(9) If the name is not in the lexicon:
MAP (&dia-target) TARGET QMRK IF
(*-1 QDL BARRIER (&dia-target) LINK 0
(What is your name)) ;

(10) The name is in the lexicon:
MAP (&dia-target) TARGET Prop IF (*-1 QDL
BARRIER (&dia-target) LINK 0
(What is your name)) ;

The set QMRK contains the question mark, and
is given if the name is not in the lexicon, which is
quite common with names. Both rules have &dia-
target as barrier so it will hit only the first name, if
there are many. There are similar rules and tags for
information concerning place names, car brands
and so on, and the information is used by the sys-
tem in variables in tailored questions or utterances.

4 Tutorial feedback

The system gives tutorial feedback about grammar
errors both in Vasta and Sahka. The feedback is
generated from the grammar error tags, which are
assigned during the disambiguation analysis. It
should be noted that the system uses the grammat-
ical analyser on the fly, exploiting full lexicons.
This allows the user’s answer to contain any Sámi
word, also words that are not restricted to the ped-
agogical lexicon.

4.1 Grammar errors

Figure 9: A grammar error tag is assigned.

In the question in Figure 9, the systems asks
”In which room should we place the TV?” The

user answers ”Moai bidje TV gievkkanis” (’We
should place the TV in the kitchen’), with loca-
tive “gievkkanis” rather than the correct illative
“gievkkanii”. The CG parser disambiguates the
input, and the sentence matches the structural de-
scription of the general CG rule in example (11):

(11) MAP (&grm-missing-Ill) TARGET (”guhte”) IF
(1 (N Ill) LINK *1 QDL LINK NOT *1 Ill OR
ADV-ILL OR Neg BARRIER S-BOUNDARY) ;

The rule adds a grammar-error-tag &grm-
missing-Ill to the sentence analysis triggered by
the interrogative pronoun followed by a noun in
illative. This combination requires an illative form
in the answer, when there is no illative form nor
adverb with illative interpretation nor negation
verb in the answer. The Sahka-engine generates
a tutorial message based on the error-tag, given in
example (12):

(12) <message id=”grm-missing-Ill”>The
answer should contain an illative. </message>

One of the pedagogical goals behind the pro-
grams is that the user should practice inflecting the
finite verb correctly. A central requirement is thus
that the user answers with full sentences contain-
ing a finite verb. To encourage the user to practice
also difficult verbs, she has to use the same verb as
in the question. The CG rule in example (14) con-
trols the choice of verb for the answer, and it uses
a regular expression-based tag (a so-called sticky
tag). The verb is identified via a regular expres-
sion .∗ (cf. (13)), and the rule in (14) is triggered
if it does not find the same verb lemma in both the
question and the answer.

(13) LIST VERBLEMMA = (”.*”r) ;

(14) MAP (&sem-answer-with-same-verb) TARGET
FINVERB (NOT 0 Neg OR AUX-SET) (0
$$VERBLEMMA LINK *-1 QDL BARRIER
S-BOUNDARY OR FINVERB LINK NOT 0
EXEPTION-QUESTIONS LINK *-1 FINVERB
-1 BOS LINK NOT 1 $$VERBLEMMA)) ;

BOS is the left border of the sentence. Pro-
verbs get a special treatment, and a question
containing a pro-verb will accept any verb in the
answer. There are also exceptional rules for some
auxiliary verbs and for some questions, like for
the question ”What is your name?”, which will
more naturally be answered without a verb.

In Vasta the pronouns are not allowed to be in-
terpreted inclusively (we / you, not we / we), but in
Sahka they follow the logic of the scenario. This

is the main reason for why Sahka has a slightly
different rule set compared to Vasta. To indicate
the type of the program in the morphological anal-
ysis, the delimiter between question and answer
in Sahka is ”ˆsahka” instead of the delimiter tag
”ˆqst” used in Vasta.

Some of the questions in the Sahka dialogues
are made for special grammatical training such as
adjectival comparison. These questions populate
a whole section of rules in the CG file. The rules
add specific feedback to the potential errors.

The user will get only one feedback at a time, so
the error tags are ordered partly as natural progress
for error correction, and partly according to the
likeliness of the error. First of all, the user will
get feedback about spelling errors. If there is no
agreement between subject and verb, then she will
get feedback on the verb form, and not on the pro-
noun, given the assumption that the error is in the
verb form rather than in the pronoun.

Grammar errors we have rules for, include

• verbs: finite, infinite, negative form, correct
person/tense according to the question

• case of argument based upon the interroga-
tive

• case of argument based upon valence
• locative vs. illative based upon movement
• subject/verbal agreement
• agreement inside NP
• numeral expressions: case and number
• PP: case of noun, pp based upon the interrog-

ative
• time expressions
• some special adverbs
• particles according to word order
• comparison of adjectives

4.2 Misspellings
The user’s misspellings form the largest distinct
problem for the functionality of the game. If the
spelling error gives rise to a non-existing word
form, then the message to the user is ”The word
form is not in our lexicon, can it be a spelling er-
ror?”, which often is not of enough help to the
user. A human reader would be able to read the
answer in a robust way, and detect what the user
intended to write. Simulating this ability is not an
easy task.

Running the feedback through an ordinary
speller engine is not a good solution, since the
speller will come up with a large number of sug-
gestions, without being able to choose between

them. A possible solution would be to run a mor-
phological analysis on the speller suggestions, and
let a CG component pick the most likely candi-
dates. The problem is that the current North Sámi
speller (http://divvun.no) is made for na-
tive speakers and corrects mainly typing errors.
In Vasta and Sahka, we would need a correction
mechanism for errors due to wrong choice of af-
fixes.

As a partial solution, we have added rules to the
morphophonological rule file for typical spelling
errors in e.g. place names. This enables the sys-
tem to give a specific feedback in case of typical
misspellings of place names. If the place name
still is not recognized by the analyser, the feed-
back in the dialogue is ”I haven’t heard about X.
Is it a place?”, and the navigation proceeds to the
next question.

The misspelling can also give rise to another
word form of the same lemma. For such cases
we have made rules based on the sentential con-
text. The challenge is to give a feedback accord-
ing to what the user thinks she has written, because
she is probably not aware of the unintended word
form. E.g. if the consonant gradation is incorrect
in an attempted singular locative, the word form
will be a nominative with possessive suffix Sg3.
The learner will probably not know the possessive
suffixes yet, so referring to it would not be use-
ful. Instead, she gets the feedback: ”Do you mean
locative? Remember consonant gradation.”

A more difficult problem emerges when the
spelling error gives rise to an unintended lemma.
Then the challenge is again to give feedback ac-
cording to what the user thinks she has written.
The feedback has to be tailored to what we know
about the user’s interlingua – and we have made
some rules for sets of typical unintended lemmas.
Some of them are systematic, such as the Sg2 of a
verb incorrectly used after the negative verb, will
result in a ConNeg form of a derived verb.

4.3 Metacomments

The Sahka program is intended to mimic a natu-
ral dialogue. But there are some restrictions in the
possible input from the user; the system has to be
able to analyse the input, and the answers should
be pedagogically meaningful for the user. To re-
mind the user of that, the system sometimes give
metacomments to the user, like the following:

• ”Answering I-don’t-know is too simple. Try

again.”
• ”Your answer must always contain a finite

verb.”
• ”You must use one of the words in the

wordlist in the left margin.”
• ”You have not used the correct adjective. Try

again.”

5 Evaluation

The evaluation of Sahka and Vasta was done when
the programs had been available on internet for
three months. The user’s input and the feed-
back from the system were logged for the last two
weeks of the period. The log shows that Sahka has
six times as many queries as Vasta, so users clearly
prefer the former one.

The system gave 156 tutorial feedbacks for the
two programs during the two weeks. Breaking
down the precision numbers on type of feedback,
we got the picture shown in Table 1. Of 27
erroneous judgements, 16 were due to technical
malfunction, 9 to wrong syntactical and 2 to
wrong lexical analysis.

Rule type corr. wrong corr. %
wrong tense 7 0 100,0
wr. V after neg 3 0 100,0
no infinite V 1 0 100,0
orth. error 44 2 95,7
wr. case V-arg 26 4 86,7
no finite verb 19 4 82,6
wr. S-V agreem. 17 8 68,0
wrong V choice 7 4 63,6
wrong word 4 4 50,0
wr. case after Num 1 1 50,0

Table 1: Feedback precision for different rule
types.

As shown in Table 1 not all of the rule types
mentioned in 4.1 have been in use during this pe-
riod. These rule types have not been used:

• agreement inside NP (except for numeral
expressions)

• nominal case inside PP
• time expressions
• word order errors for particles

The reason is probably that the users do not
write more complex language than they have too.
E.g. they don’t answer with a complex NP if they

can answer with just a pronoun or a noun, they
don’t write a time-expression with PP if the can
answer with an adverb instead, and they don’t use
optional particles if they are unsure of where to put
them. The price we pay for the free input strategy
is that the users are not forced to exercise more
complex language.

Table 2 on page 9 shows different kinds of error
types the system has identified in the user’s sen-
tences, these we call positives. If it really is an er-
ror, then we call it it a true positive, if not, then it is
a false positive. A sentence not flagged as an error
by the system is counted as a negative, and we dis-
tinguish between true negatives (correct answers)
and false negatives (erroneous answers which the
system did not detect).

We measured precision (correctly identified er-
rors/all diagnosed errors), recall (correctly identi-
fied errors/all errors), and accuracy (correct judge-
ments/cases). For the error types we target, pre-
cision = 0.85, recall = 0.93, and accuracy = 0.89
(N=277). Better recall than precision indicates
that very few errors slip through, at the price of
erroneously identifying some correct forms as er-
rors. The system is thus a bit too critical towards
the students: It almost never lets through a (tar-
geted) mistake. In this pedagogical setting, a goal
for future work is improving precision (avoiding
erroneous error flagging), perhaps even with the
risk of a lower recall.

6 Future perspectives

We have started the work with improving the sys-
tem. Among our future plans are:

Implementing a speller. Because the mis-
spellings are the biggest problem for the
users, we will implement a speller. We
will give relevant suggestions to the user by
analysing the list of suggestions according
to the context with CG, and also implement
weighted lexical transducers, see (Linden
and Pirinen, 2009). For the weighting we
will use the pedagogical lexicon and the
North Sámi corpus as a training corpus.

Implementing a topic option in Vasta. Today
Vasta generates questions randomly within
each level based on grammar difficulty. The
log shows that this program is not as popular
as the Sahka. We are planning to make it
more interesting for the users by restricting
the semantic sets for the variables in the

question templates according to topics, and
give the user’s a topic option as well.

Sentence building from a fixed set of lemmas.
We are also considering forcing the user
to construct more complex phrases and
also use more particles, by deciding what
lemmas the user should use, as a supple-
ment to the other programs. Available on
internet is e-tutor – a program for teaching
German to foreigners (Heift, 2001), at
http://e-tutor.org/. e-tutor gives
very good feedback to student’s errors, but
the possible input is restricted to a set of lem-
mas by means of which she has to construct
a sentence. In this way the user is forced
to write more complex phrases. Figure 10
shows an example from the program.

Conduct studies on Oahpa in actual use.
Investigating how Oahpa works in actual use
in the classroom will be important in the
work with improving the system.

Porting the programs to more Sámi languages.
For Lule Sámi a morphological analyser is
available, and we have started making a
CG disambiaguator. For South Sámi a
morphological analyser will be finished in
2010.

Figure 10: An alternative to free input is e-tutor.

7 Conclusion

The paper has shown how we use vislcg3 for peda-
gogical dialogue systems for North Sámi. Vislcg3
is used in many ways: By relaxing the analysis of
the input string, we are able to find errors made by
the user, and assign feedback tags to the analysis.
Secondly, by analysing the semantics of the user’s
input, and assigning semantic tags to the input, we
are able to navigate through the dialogue accord-
ing to user feedback. And finally, we can assign

Error type true pos. false pos. true neg. false neg. precision recall accuracy F-ms.
Gramm. error 641 234 769 7 0,73 0,99 0,85 0,84
Semant. error 805 69 764 12 0,92 0,99 0,95 0,95
Orthogr. error 875 0 776 0 1 1 1 1
Other error 695 180 751 25 0,79 0,97 0,88 0,87

3016 483 3060 44 0,86 0,98 0,92 0,92

Table 2: Precision, recall and accuracy for different error types.

tag to information in the user’s input and use it in
the program’s questions or utterances.

The CG formalism has a great potential for use
in pedagogical settings. It is robust enough to han-
dle erroneous data, and at the same time flexible
enough to give both general corrections, and cor-
rections targeted at specific words in specific set-
tings.

We have seen that a major problem is spelling
errors. Whether CG is able to offer a solution for
this problem as well, remains a topic for future re-
search.

Acknowledgments

Thanks to the faculty of Humanities at the Univer-
sity of Tromsø, and the Sámi Parliament in Nor-
way, for funding the project.

References
Lene Antonsen, Saara Huhumarniemi and Trond

Trosterud. 2009. Interactive pedagogical programs
based on constraint grammar. Proceedings of the
17th Nordic Conference of Computational Linguis-
tics. Nealt Proceedings Series 4.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI publications in Computa-
tional Linguistics. USA.

Eckhard Bick. 2005. Live use of Corpus data and
Corpus annotation tools in CALL: Some new devel-
opments in VISL. Holmboe, Henrik (ed.): Nordic
Language Technology, Årbog for Nordisk Sprogtek-
nologisk Forskningsprogram 2000-2004, 171–185.
København: Museum Tusculanums Forlag.

Krister Lindén and Tommi Pirinen. 2009. Weighted
Finite-State Morphological Analysis of Finnish
Compounding with HFST-LEXC. Proceedings of
the 17th Nordic Conference of Computational Lin-
guistics.. Nealt Proceedings Series 4.

Trude Heift. 2001. Intelligent Language Tutoring Sys-
tems for Grammar Practice. Zeitschrift fur Interkul-
turellen Fremdsprachenunterricht [Online] 6(2).

Fred Karlsson, Atro Voutilainen, Juha Heikkilä and
Arto Anttila. 1995. Constraint grammar: a
language-independent system for parsing unre-
stricted text. Mouton de Gruyter.

VISL-group. 2008. Constraint Grammar.
http://beta.visl.sdu.dk/constraint grammar.html
University of Southern Denmark.

