Generation of Patterns

with the OPATGEN Program
User Guide

David Antos

xantos (at) fi.muni.cz
http://www.fi.muni.cz/"xantos/patlib

This is a documentation of the OPATGEN (version 1.0) word hyphenation
generator. OPATGEN takes list of hyphenated words and creates patterns to use
in TEX. OPATGEN is able to handle UTF-8 encoding.

This documentation is part of the OPATGEN program. You can use this
software under the terms of General Public License. See enclosed General Public
License for details. There is no warranty; not even for merchantability or fitness
for particular purpose. The entire risk is with you.

2.1
2.2

3.1
3.1.1
3.1.2
3.2
3.3

4.1
4.2

Introduction 2
What the patterns are i 2
The patterns e 2
How patterns are generated 4
OPATGEN tutorial 5
First generating i 6
Running OPATGEN e 6
Adding more levels 11
Parameters, weights, and relatives 14
Defining our alphabet 16
Small but useful tools 18
dic2traskelet i 18
opgwrap and OPELOG2reDttt 19
Invoking OPATGEN e 19
Dealing with bugs i 20
Credits oo e 20

2.1

Introduction

Introduction

The OPATGEN program takes a list of hyphenated words and creates patterns
that can be loaded into TEX to enable word hyphenation. OPATGEN is a com-
plete reimplementation of Frank Liang’s PATGEN program. It brings following
advantages.

e Full UnicobpE (UTF-8) support, independent on system UNICODE support.
e Big alphabet handling.

e Dynamic data structures, it reduces the “capacity exceeded” problem.

e “Unlimited” number of hyphenation values.

¢ Hasier modifications.

If none of the highlights above is important for you, you may use the PATGEN
program instead. It is quicker. Reading the guide will not be waste of time as we
cover the pattern generating topic inside-out and we refer to differences between
PATGEN and OPATGEN programs. The differences from user’s point of view are
quite small. And if you run into difficulties with PATGEN, you may easily switch
into OPATGEN paying with longer runtime only.

What the patterns are

If you are familiar with Appendix H of The TEXbook and you have experience with
generating hyphenating patterns and using them in TEX, feel free to skip to the
next section. This section describes what patterns are and how they are used to
find hyphen points. If you are completely new to deal with patterns, I recommend
you not only reading this guide but also to have a look at the Appendix H.

The patterns

TEX hyphenates a word first looking in the exception dictionary. If the word is
not there, TEX looks for patterns for that word. Let’s use the example from The
TEXbook. Having the word hyphenation, TEX first extends it by special markers
meaning the beginning and end of the word. Let’s use a dot for that marker. So
we get

What the patterns are

.hyphenation.

The extended word has subwords
.hyphenation.

of length one,

.h hy yp ph he en na at ti io on n.

of length two, and so on.

Each subword is a pattern that defines integer values related to the desirability
of hyphens in the positions between its letters. We usually show the values as
numbers between letters, for example OhOe2n0 means that the values of the hen
subword are 0, 0, 2, and 0, where 2 is related to the position between e and n
characters.

The interletter values are zero for all subwords except the ones in TEX’s pattern
dictionary. In this case, only the subwords

OhOy3pOhO OhOe2n0 OhOeOnOa4
Oh0OeOn5a0t0 1n0a0 On2a0t0 1t0i000 21000 002n0

happen to be special patterns. TEX computes the maximum intercharacter value
that occurs at each subword touching each position. The result of all the maxi-
mizations is

.OhOy3pOhOe2n5a4t2i002n0.

And the most important part: A hyphen is correct if the hyphen value is odd.
Therefore the break-points found are hy-phen-ation.

We also call this type of patterns competing patterns as the bigger hyphenating
value wins over the smaller one. Viewed in other way, the patterns hold the context
of the hyphen point that is able to decide whether the point is/is not good to
break the word at. To create most efficient patterns we want the context to be as
small as possible. Very non-formally we may also say that the patterns we create
may also recognize the suitable hyphen points not only in word list they were
generated from but also in any word that is broken in similar way. The patterns
hold characteristics of the breaking-point occurrence.

A similar technique may be also used to create patterns that recognize some-
thing else. Quite good results can be obtained when recognizing compound word
boundaries (this can be directly done with OPATGEN without modifications),
typesetting long versus short s in fraktur and so on. Other applications are be-
yond scope of this manual.

2.2

What the patterns are

Now the problem stands how to create the pieces of words with the ugly small
numbers.

How patterns are generated

We use an iterative approach to generate the patterns. We need an input data
file—dictionary with hyphen points marked with a special symbol. We use a dash
for that. The typical list of words in English starts with

abil-i-ty
ab-sence
ab-stract
ac-a-dem-ic
ac-cept
ac-cept-able
ac-cept-ed

and so on.

We go through the dictionary in several levels. In odd levels, we create covering
patterns, in even levels we create inhibiting ones. Let us recall that odd hyphen-
ating values mean that hyphenating is allowed. We also speak about covering and
inhibiting levels.

We choose pattern candidates at each level. The candidate choosing rule is
simple: we take subwords of given length range. For example in the first level we
may take candidates of lengths 2 and 3, in the second level candidates of lengths
3 to d.

The level consists of several passes. The pass is the basic unit of the generating
process. During the pass the input dictionary is passed just once. The pass
means picking candidates of certain length and hyphen position. The passes in
the level are ordered from shorter lengths to longer ones and for each length for
hyphen positions in “organ-pipe fashion,” it means from the middle, then the
position left to the middle, right to the middle, and so on to the edges of the
word. The candidate is a subword that works well and/or badly on the word.
For covering levels working well means covering an allowed hyphen point and the
bad counterpart is allowing wrong hyphenation. In inhibiting levels good work is
inhibiting an error and bad work is inhibiting a good hyphen already found.

We store the number of cases of good and bad behaviour for each candidate
as good_count and bad_count. We ignore candidates that are superstrings of
either good or bad patterns at this level as they simply have no effect on the
hyphenation process. The shorter candidate holds the same information as its
superstring. This optimization is called knocking out.

OPATGEN tutorial

After the pass is finished, candidates are selected. We use three variables to
control this process—good_wt, bad_wt, and thresh. The pattern choosing rule
goes as follows.

1. If the candidate satisfies

good_wt x good_count < threshold

then we insert the candidate into patterns marked as bad, it means with odd
value higher than the current level. We need it for subsequent passes, it will
be removed when the level is finished.

2. If the candidate satisfies

good_wt * good_count — bad_wt * bad_count > threshold

then the candidate is good, we insert it into the patterns with the current
hyphenation value (the level number).

3. Otherwise, the candidate is thrown away and we set more_to_come. It means
that there might still be longer patterns extending the current length and
hyphen position and we will check them.

After that process various statistics are printed.

At each level, pattern is considered good if it repairs errors made by previous
patterns. The good_wt, bad_wt, and thresh variables are local for a level. After
the level is finished, the bad patterns that have been added are deleted.

When finishing the work we may have the input dictionary hyphenated by the
patterns collected so far. If the number of errors is still to high for us, we may
continue making another level correcting the errors of patterns from the previous
runs.

Confused? Don’t care, breathe deeply and read the step-by-step tutorial, where
all the things you need to know are explained slowly with examples.

OPATGEN tutorial

In this section we study an example of pattern generating process and explain it
inside out, covering the features of OPATGEN generator.

Convention: We sometimes highlight differences between PATGEN and OPAT-
GEN in curly braces, saying { PATGEN: no UNICODE support}. We hope it makes
switching the program easy.

3.1

3.1.1

OPATGEN tutorial

First generating

We need an input data to create patterns. We often call the input data the
dictionary. The dictionary is a sequence of words, one word on a line. The words
must start at the first column, everything after the first space on the line is ignored.
The allowed hyphen points are marked with dashes.

Let’s have the following dictionary (those are nearly random words over the
English alphabet chosen only to show you the things I want to).

ab-cd-efgh
cd-cde
cdc-id-cde
de-fgh

We have the words in the dic file.

Running OPATGEN

It is time to run OPATGEN. OPATGEN takes four parameters, the dictionary file
name, the patterns to read in, the output file name and the translate file name.
The translate is a topic by itself, so we describe it separately. As the runs of
OPATGEN may be quite time-consuming, we may read in a set of patterns we
created in previous levels, as we will see later. For the start, only the dictionary
and output files are important. So we substitute the rest with /dev/null. Run
the program with me if you can, to see the process alive.

opatgen dic /dev/null out /dev/null
The screen fills with something like this:

This is OPATGEN, version 0.1

shortened ...
Translate file does not exist or is empty. Defaults used.
left_hyphen_min = 2, right_hyphen_min = 3

If we don’t say otherwise (using the translate file), OPATGEN knows the English
alphabet and works in 8-bit ASCII. The translate file may also set the values
of left_hyphen_min and right_hyphen_min. The values specify the number of
left and right characters of each word where hyphenation is ignored. The values
are language dependent and they mean the minimal number of characters that
can be left at the end of a line before a hyphen and the minimal number of
characters that can go to the next line after a hyphen. The default values are for
PATGEN compatibility, I think it makes no sense to use anything else than 1, 1

OPATGEN tutorial

when generating hyphenating patterns. We may ignore borders of a word when
using patterns, and not generating.

26 letters

The number of letters is the number of symbols in the alphabet. Each letter may
have several representations in the input data, as we’ll see later.

hyph_start, hyph_finish: 1 1

0 patterns read in

pat_start, pat_finish: 1 2

good weight, bad weight, threshold: 1 1 1

Here we set the values. The hyph_start and hyph_finish mean the range of
levels we want to make. After specifying those values patterns from the pattern
file are read in. We do not have any as we're just starting, so /dev/null was a
good choice as we have nothing to read in. The patterns to read in may contain
only hyphenating values less than hyph_start.

The pat_start and pat_finish control the range of lengths of the patterns.
The values 1 and 2 mean we take candidates of length one and two. The last
three variables control the pattern choosing process, the choosing rules have been
described above.

Generating level 1
Generating a pass with pat_len = 1, pat_dot = 0

First the patterns with length one are created, starting with the hyphen (we
often say dot) position after the zeroth character of the pattern. It sounds quite
stupid, nevertheless it is a good way to refer to positions. It simply means the
leftmost position of the word, the candidates we deal with look like 1x, where x
is a character.

0 good 0 bad 6 missed
0% 0% 100 %

The numbers denote the numbers of cases when the patterns act well, badly,
and/or miss finding a hyphen point. The very first pass always misses everything,
of course. The percent counts are related to the sum of good and missed, therefore
the sum of the line does not have to give 100.

Count data structure statistics:
nodes: 28
patterns: 5

OPATGEN tutorial

trie_max: 28
current g_max_thresh: 3

The statistics of the internal structures, the most interesting thing is the count of
the patterns, the rest of values needs to know quite a lot about the internal work
of the generator.

Collecting candidates

3 good and 1 bad patterns added (more to come)
finding 5 good and 1 bad hyphens

efficiency = 1.25

Pattern data structure statistics:

nodes: 28
patterns: 4
trie_max: 28
current q_max_thresh: 5
number of different outputs: 3

Now the candidates are collected. Good and bad ones are added and there were
candidates not satisfying the collecting conditions, it means there might still be
good patterns longer than current ones. This is indicated by the (more to come)
text. Numbers of found good and bad hyphens appear and the efficiency is printed.

The efficiency is computed as follows. Let good_count be the number of
good cases of acting of patterns, bad_count the number of erroneous cases, and
good_pat_count the number of good patterns. Then the efficiency is calculated
as

thresh

bad_eff = ———
good_wt

good_count

efficiency =

ood_pat coun1:-+-bad_Count
good-pat- bad_eff

Let’s come back to the generating process.
Generating a pass with pat_len = 1, pat_dot =1

5 good 1 bad 1 missed

83 % 16 % 16 %

Count data structure statistics:
nodes: 28

OPATGEN tutorial

patterns: 3
trie_max: 28
current g_max_thresh: 3

Collecting candidates

0 good and 2 bad patterns added (more to come)
finding 5 good and 1 bad hyphens

Pattern data structure statistics:

nodes: 28
patterns: 4
trie_max: 28
current g_max_thresh: 5
number of different outputs: 4

Now we generate a pass looking for patterns x1. It turns out there is nothing good
here we can add.

Generating a pass with pat_len = 2, pat_dot =1
5 good 1 bad 1 missed

83 % 16 % 16 %
Count data structure statistics:

nodes: 29
patterns: 1
trie_max: 29
current q_max_thresh: 3

Collecting candidates

0 good and 0 bad patterns added (more to come)
finding 5 good and 1 bad hyphens

Pattern data structure statistics:

nodes: 28
patterns: 4
trie_max: 28
current g_max_thresh: 5
number of different outputs: 4

Candidates x1y are examined.
Generating a pass with pat_len = 2, pat_dot = 0

5 good 1 bad 1 missed

83 % 16 % 16 %

Count data structure statistics:
nodes: 29
patterns: 1

OPATGEN tutorial

trie_max: 29

current g_max_thresh: 3

Collecting candidates

0 good and O bad patterns added (more to come)
finding 5 good and 1 bad hyphens

Pattern data structure statistics:

nodes: 28
patterns: 4
trie_max: 28
current g_max_thresh: 5
number of different outputs: 4

Generating a pass with pat_len = 2, pat_dot = 2

5 good 1 bad 1 missed
83 % 16 % 16 %
Count data structure statistics:

nodes: 29
patterns: 1
trie_max: 29
current q_max_thresh: 3

Collecting candidates

0 good and O bad patterns added (more to come)
finding 5 good and 1 bad hyphens

Pattern data structure statistics:

nodes: 28
patterns: 4
trie_max: 28
current q_max_thresh: 5
number of different outputs: 4

And finally the candidates 1xy and xy1 are tested. Note that none of them added
anything useful. Have a detailed look at the output and check carefully what
happens.

1 bad patterns deleted
total of 3 patterns at level 1

During the first level one bad candidate has been added. It is deleted now, when
the level ends.

hyphenate word list <y/n>? y
Writing file pattmp.1

10

3.1.2

OPATGEN tutorial

5 good 1 bad 1 missed
83 % 16 % 16 %

The final question is if we want to see the work of the new-born patterns on the
dictionary file. We want to. So the words of the dictionary are hyphenated with
patterns we have and the result is written into pattmp.n file, where n is the last
level number. The patterns we have are written into the output file. The patterns
act five times well, make one error, and can’t find one of good hyphen points. The
percent counts are again related to the sum of good and missed hyphens.

Let’s now have a look at the results. The patterns we created are

ic
le
1i

and the hyphenated dictionary in the pattmp.1 goes

abxcd*xefgh
cdxcde
cd.c*id*cde
de-fgh

The hyphens we find are marked with ‘*’, the bad ones (we find and they are
wrong) with ¢.”, and the ones we miss with ‘-’.

Please have a look at the patterns and the output and try to hyphenate the
words using the patterns yourself.

Adding more levels

The patterns are not as good as they might be. They make an error. Let us add
the second level, the inhibiting one. The even levels correct errors, the odd ones
add hyphenating points. First we copy the out file into the pat, so as not to have
to generate the first level again. Now we start OPATGEN with the pattern file
name pat.

opatgen dic pat out /dev/null
Now the OPATGEN’s output will be much more shortened, as I do not like manuals
over 500 pages. Let’s set the values, we want to generate the second level, and

we want to deal with candidates of lengths two and three. Now we slightly prefer
good patterns over bad ones, therefore we set the weights to 1, 2, and 1.

11

OPATGEN tutorial

shortened ...
hyph_start, hyph_finish: 2 2
3 patterns read in
pat_start, pat_finish: 2 3
good weight, bad weight, threshold: 1 2 1

Here we go. We start with patterns of length two and continue with length three,
the dot positions are ordered in “organ pipe” fashion for each length.

Generating level 2
Generating a pass with pat_len = 2, pat_dot =1

5 good 1 bad 1 missed
83 % 16 % 16 %

Collecting candidates

0 good and 3 bad patterns added (more to come)
finding 5 good and 1 bad hyphens

Generating a pass with pat_len = 2, pat_dot = 0

5 good 1 bad 1 missed
83 % 16 % 16 %

Collecting candidates
1 good and 3 bad patterns added
finding 6 good and 1 bad hyphens

Generating a pass with pat_len = 2, pat_dot = 2

5 good 0 bad 1 missed
83 % 0% 16 %

0 good and 4 bad patterns added

finding 5 good and 0 bad hyphens

Wow, where is the length three we wanted? The length is silently skipped as there
was no more to come, in human words, we know there can’t be longer patterns
extending the ones we created. So we do not waste time to check them again.

12

OPATGEN tutorial

We have taken some bad patterns, we delete them now. We added just one
pattern to our set. And we want the word list to be hyphenated.

7 bad patterns deleted

total of 1 patterns at level 2
hyphenate word list <y/n>?7 y
Writing file pattmp.2

5 good 0 bad 1 missed
83 % 0% 16 %

Now the patterns and the hyphenated list are:

ic
2ci
le
1i

abxcd*xefgh
cdxcde
cdc*id*cde
de-fgh

What an improvement! We reduced the number of errors from one to zero! Now
we only miss one hyphen. We may correct it adding one more level, the third,
covering one.

We again copy current outputs to the pattern file and repeat calling OPATGEN
with the patterns to read in. Now we set the hyphenation level to 3, the length
range from 3 to 3 (do you see it’s enough?), and the parameters to 1, 10, and 1.
This is how we say that we want patterns that do not have to cover many points,
nevertheless if they make an error, they are heavily penalized for that.

hyph_start, hyph_finish: 3 3

4 patterns read in

pat_start, pat_finish: 3 3

good weight, bad weight, threshold: 1 10 1

Generating level 3

13

3.2

OPATGEN tutorial

total of 1 patterns at level 3
hyphenate word list <y/n>? y
Writing file pattmp.3

6 good 0 bad 0 missed
100 % 0 % 0 %

Hooray! Complete success! We cover all the hyphen points and make no errors at
all, let’s have a look at the patterns.

.de3
ic
2ci
le
1i

What is the dot now? The dot in the pattern file is a special character meaning
the edge of a word. Such a pattern matches only the words starting with de. The
dot may also appear at the very end of a pattern.

Final notes: If you have a real dictionary with thousands of words, do not
expect the covering of hyphen points to be complete. There will be errors that
can be corrected adding more levels or using the exception dictionary. And note
that you may generate several levels at a time giving the level range to the first
OPATGEN’s question.

Now try generating patterns with different lengths than I did and with different
parameters and check the results carefully.

We sometimes need a word list to be hyphenated without pattern generation
itself, for example if we want to test the patterns on another word list that they
were created. So OPATGEN allows a special setting of the level range to achieve
the effect. If the hyph_finish is smaller than hyph_start, the patterns are read
in, there is nothing to generate, and OPATGEN asks whether to hyphenate the
word list.

Parameters, weights, and relatives

The important question we have not discussed in the previous overview is how
to set the generating parameters good_wt, bad_wt, and threshold. There is no
simple answer to that. More precisely, the simple answer is “nobody knows.”
Setting the parameters is the most interesting part of the generating process, it
is heavily input data dependent. The problem is more than twenty years old and
there is no theoretical framework for that.

Generating of patterns needs some experience and intuition. Now I put only
several remarks what you can expect in general. We write the good_wt, bad_wt,

14

OPATGEN tutorial

and threshold values as three numbers to be short, so (1, 10, 4) means good_wt
to be 1, bad_wt 10, and threshold 4.

Let us start with bad_wt. If that value is low (related to the threshold), you
allow patterns to make errors. This may be good in first level if you want to cover
as much as possible. In higher levels, the setting like (1, very high number like
1000 or so, 1) can be often found, making the patterns to be highly penalized for
an error. The good_wt is often set to a small number like 1, 2, or 3. For example,
setting (1, 2, 20) may be quite nice for first levels, as it takes patterns that are
good 20 times with no error, or 22 times with one error and so on. This may be
suitable for short patterns, for longer patterns it would miss quite good and error-
less patterns if they appear less than 20 times. Another often seen settings are
(1, 5, 1), penalizing errors, or (1, 4, 7), preferring patterns covering more points.

Another problem is how to change the pattern length range. For our applica-
tion patterns can be quite short, 1 to 7 characters for languages like English, a bit
more for German, as an example of a language with longer words. Usual setting
is 1-3 for first and second level, slowly increasing to 4—6 for the fifth level. Some
pattern creators don’t like patterns of length 1 and start from 2. In general, the
shorter the patterns are, the quicker their usage is.

There is no golden rule. Read some articles summing up the experiences with
generating patterns for various languages, there can be found elsewhere.

One small complication can make adjusting the parameters a bit more difficult.
The words in our dictionary can be weighted. If there is a number at any interletter
position in the input data, the position is counted as many times as the number
says. It brings the possibility to weight some words in our dictionary more heavily
to make their hyphenation more important. For example

hy-2phen-a3-ti7on

means that the position between y and p will be counted as it appeared twice and
the position between a and t as it appeared three times. The position between
i and o is counted seven times. Also note it makes no difference if we put the
number before or after the hyphenation mark.

The weight may be a natural number, not only a digit. {PATGEN: only one-
digit weights are allowed.}

There is a useful exception. If the number appears in the very beginning of
the word it means the global word weight that is valid until it is changed. After
a global weight we represent all positions of all following words as having that
weight unless the position itself sets something else. Have a look at the example.
Also note the using of global weight 1 to turn back to the defaults.

ab-c2d
3quw-erty
udi-op
lef-gh

15

3.3

OPATGEN tutorial

will be represented as (we don’t put down the default weight 1)

ab-c2d
q3w3-e3r3t3y
u4i3-o3p
ef-gh

This feature may be useful if you want to prefer correct work of your patterns on
a subset of the dictionary over the rest, for example according to the frequency of
words in the language.

When hyphenating a word list the weights are copied into the pattmp.n file.
They are copied in the “minimal” form, the form of the dictionary file doesn’t
have to be preserved.

Defining our alphabet

We can generate patterns now. But we used only English alphabet for that, there
are many languages using accents and more than the twenty-six symbols. We
may use two approaches to handle that problem, the first one is to use the escape
sequences, the other is UNICODE. We may also combine the two things together.
Using UNICODE obsoletes having escape sequences to represent letters in TEX,
nevertheless we provide this feature for PATGEN compatibility, even though it
complicates the program considerably.

What we need to now is a translate file. The translate file controls the al-
phabet we use. The first line of the translate file is special. It sets the values of
left_hyphen_min and right_hyphen_min variables in the first two and second
two columns. If those values are invalid, OPATGEN will ask for them interactive-
ly. The remaining three columns of the line, namely the fifth to the seventh, may
define replacements for the ., -, and * characters to be used in the word list. The
replacement characters may be 7-bit ASCII values. The rest of the line is ignored.
The replacements might be useful if you want to use some of that characters to
denote an accent.

The rest of the file defines the letters of the alphabet of the language. Note
that if the translate file is empty, the defaults are used. If the translate file is not
empty, you must put all the alphabet you use into it, including the default a to z
symbols (if they appear in your input data, of course). We need it to store the
words efficiently.

Each line contains a delimiter in the first column, this is a character not oc-
curring in any representation of the letter on the line. The delimiter is any 7-bit
ASCII value. The delimiter is followed by any number of representations of the
letter. The representations are separated by the delimiter. The very first repre-
sentation of the letter in the line is called primary or lowercase, the other ones

16

OPATGEN tutorial

are secondary or uppercase. The names come from the fact that TEX hyphen-
ates words temporarily converted to their lowercase forms. Any of that forms
may be used in input files, but for OPATGEN all of them have one internal code.
When OPATGEN is writing the letter into a file, it uses the lowercase form only.
{PATGEN: There must be double delimiter to finish the last escape sequence in
the end of the line.}

Anything after double delimiter is a comment, either at the very beginning of
the line or anywhere else. Empty lines are ignored.

What the representation of the letter may be depends of OPATGEN’s mode.
If the mode is ASCIT (the default we used in our examples), the letter may
be an 8-bit ASCII value or escape sequence created out of 8-bit ASCII values.
The UNICODE mode is specified by the —u8 switch as the first parameter of the
command line. In the UNICODE mode the letter representations may be 7-bit
ASCIT values, UTF-8 multibyte characters, and escape sequences made out of
7-bit ASCII values. We highly recommend using only 7-bit ASCII characters in
the escape sequences in any case.

The escape sequence starts with an escape character. If a character is used
as escape it may not be used as an ordinary character. The rest is a sequence of
letters and characters that are used nowhere else (invalid characters). You may
not use digits, escapes, or hyphen characters in the escape sequences. Let us have
an example of escape sequences.

uagA \mya

defines \mya as equivalent to a and A. The \ character is an escape character.
Having that line in our translate, defining abb escape sequence is invalid as the
a character is a letter. We may define a |bb sequence. The | character has not
been used before.

If the escape sequence occurs in the input file, it must be followed by a number,
a hyphenation character, an escape sequence, end of line, or at least one space. We
must be able to recognize its end. {PATGEN: no spaces, the escape sequence must
not be prefix of another one.} The spaces after the escape sequence are completely
ignored, which is similar to TEX’s reading input routine. The escape sequence is
recognized only if it starts with the same escape character as it was defined in the
translate file. For example, having \ and | escape characters, then |mya won’t be
recognized as representation of al Moreover you may define \mya and Imya to be
two different escape sequences. This differs from TEX and I hope I don’t have to
say I strongly vote against doing this.

Let us have an example of a translate file.

ulal

** I, ,am ,a, ,comment.
vagA \mya, \myA

17

4.1

Small but useful tools

ubuBuuIam a ,comment ,after two spaces.
#p#P#\varphi

The first line sets the left and right minimal hyphenation values to ones. The
third line defines the letter a. This letter may be written in input data as A,
\mya, or \myA. The fourth line defines an ordinary b letter. The last line of our
example is analogical to the second one, we only demonstrate the usage of non-
space delimiter. Note that the \varphi is not followed by space, otherwise it
would not be recognized in a word like \varphi-a! It’s a good idea to finish the
line with double delimiter to prevent trailing spaces to make hard-to-find errors.
We also recommend using a wvisible delimiter. The author once spent several hours
debugging the program to finally find out he had double space in his translate.
The syntax is efficient but it lets you easily shoot in your leg.

{PATGEN: escape sequences were usually followed by the space character in
the translate file to make the syntax of input files closer to TEX’s one. It made
lots of problems that lead to Bad representation errors without identifying the
line. I consider it quite ugly. The translate file handling in PATGEN was added
later to make it able to handle features of “8-bit TEX” and is full of beautiful
programming tricks. I consider it to be the least readable part of PATGEN.}

The input data may now contain for example words like a\varphi-\myA b and
aP-\mya b, they are both equivalent to ap-ab. The sequence a\myAP is invalid as
there is no way to recognize the end of the escape sequence. But a\myA\varphi
is correct, so is a\mya-\myA2b.

OPATGEN decides whether the files are in UNICODE or ASCII only according
to the —u8 switch. No locale or other system setting is taken into account to be
able to handle UNICODE on systems that don’t support it. As forgetting the —u8 is
a common mistake (at least T forget this very often), the error message (that seems
it has nothing to do with this problem at first sight) also reminds this possible
problem. The -u8 switch must be the first parameter of the command line.

OPATGEN also tries pretty hard to check the consistency of the translate file.
If an error occurs OPATGEN informs the user reasonably what happens.

The order of lines in the translate file controls the “alphabetical order” of
symbols in the output. The output files will be created in that order except the
pattmp.n. That file keeps the order of the dictionary.

Small but useful tools
dic2traskelet

In order to create a list of all characters occurring in the dictionary file, you
can use a tool named dic2traskelet. This program can be found in the tools

18

4.2

Invoking OPATGEN

directory. It produces a simple list of characters that appear in the file in simple
“binary” order. You can use this as a base to create the translate file, with no
risk of forgetting a character.

The dic2traskelet program is called using two or three parameters, if the
first is —u8, it switches into UTF-8 mode. The following two parameters are file
names of the dictionary file and of the translate skeleton.

opgwrap and opglog2rep

The opgwrap utility is an OPATGEN wrapper. It takes the file names to deal with
and the level parameters and calls OPATGEN repeatedly. Each run is logged,
therefore you may see exactly what happens. Moreover it always hyphenates the
word list. Use opgwrap --help to exact explanation and examples.

The wrapper produces logs with names like log.1, log.2, etc. It is very
useful to see the final results of the runs, it means the final covering information.
Therefore we have a small tool named opglog2rep (for OPATGEN log to report),
it takes the logs, the starting number, and the name of the output file. Then it
fills the output file with the final results of the logged runs, more precisely with
several final lines of logs. If the word list haven’t been hyphenated in certain run,
it just adds some unuseful rubbish.

Both the programs are simple PERL scripts, not very intelligent but may be
useful. They were tested on UN*X platforms and the report maker uses the tail
tool.

Invoking OPATGEN
e opatgen --help
prints usage help and quits
e opatgen --version
prints version info and quits
e opatgen [-u8] DICTIONARY PATTERNS OUTPUT TRANSLATE
asks for parameters interactively and generates patterns using dictionary, read-

ing patterns before start, writing to output file and all that as translate con-
trols. If —u8 is set, all the files are in UTF-8 encoding, otherwise 8-bit ASCII.

19

Dealing with bugs

6 Dealing with bugs

If you find a bug in the OPATGEN program or its documentation, please report it
to the author and maintainer, xantos (at) fi.muni.cz. Describe the data you
have problem with and the conditions and parameters when the program fails.
Also add the version number, preferably the CVS revision ID, information about
your platform and compiler. Volunteers to improve my English are also welcome.

The software is far from perfect. If you have any questions, suggestions, notes,
or just anything you want to tell, feel free to contact the author. I’d be really
happy to hear of you. Your notes will be taken seriously, this differs from most
commercial software.

7 Credits
I would like to thank to
e Petr Sojka, my adviser. He taught me all the basics about pattern generating
and helped me very much with analysing the program and its implementation.
He always wants more than I am able to do; I am sure this permanent tension

made this program better.

e My parents who were walking around silently when I was chewing my pen and
hitting the keyboard.

e My friends who didn’t ask too often how things go.

e All the people who develop free software, don’t wont me to put down their
names, it would be loooong.

20

