
1

Generation of Patternswith the OPatGen ProgramUser GuideDavid Anto�sxantos (at) fi.muni.
zhttp://www.fi.muni.
z/~xantos/patlibThis is a do
umentation of the OPatGen (version 1.0) word hyphenationgenerator. OPatGen takes list of hyphenated words and
reates patterns to usein TEX. OPatGen is able to handle UTF-8 en
oding.This do
umentation is part of the OPatGen program. You
an use thissoftware under the terms of General Publi
 Li
ense. See en
losed General Publi
Li
ense for details. There is no warranty; not even for mer
hantability or �tnessfor parti
ular purpose. The entire risk is with you.1 Introdu
tion . 22 What the patterns are . 22.1 The patterns . 22.2 How patterns are generated . 43 OPatGen tutorial . 53.1 First generating . 63.1.1 Running OPatGen . 63.1.2 Adding more levels . 113.2 Parameters, weights, and relatives . 143.3 De�ning our alphabet . 164 Small but useful tools . 184.1 di
2traskelet . 184.2 opgwrap and opglog2rep . 195 Invoking OPatGen . 196 Dealing with bugs . 207 Credits . 20

Introdu
tion

2

1 Introdu
tionThe OPatGen program takes a list of hyphenated words and
reates patternsthat
an be loaded into TEX to enable word hyphenation. OPatGen is a
om-plete reimplementation of Frank Liang's PatGen program. It brings followingadvantages.� Full Uni
ode (UTF-8) support, independent on system Uni
ode support.� Big alphabet handling.� Dynami
 data stru
tures, it redu
es the \
apa
ity ex
eeded" problem.� \Unlimited" number of hyphenation values.� Easier modi�
ations.If none of the highlights above is important for you, you may use the PatGenprogram instead. It is qui
ker. Reading the guide will not be waste of time as we
over the pattern generating topi
 inside-out and we refer to di�eren
es betweenPatGen and OPatGen programs. The di�eren
es from user's point of view arequite small. And if you run into diÆ
ulties with PatGen, you may easily swit
hinto OPatGen paying with longer runtime only.2 What the patterns areIf you are familiar with Appendix H of The TEXbook and you have experien
e withgenerating hyphenating patterns and using them in TEX, feel free to skip to thenext se
tion. This se
tion des
ribes what patterns are and how they are used to�nd hyphen points. If you are
ompletely new to deal with patterns, I re
ommendyou not only reading this guide but also to have a look at the Appendix H.2.1 The patternsTEX hyphenates a word �rst looking in the ex
eption di
tionary. If the word isnot there, TEX looks for patterns for that word. Let's use the example from TheTEXbook. Having the word hyphenation, TEX �rst extends it by spe
ial markersmeaning the beginning and end of the word. Let's use a dot for that marker. Sowe get

What the patterns are

3

.hyphenation.The extended word has subwords. h y p h e n a t i o n .of length one,.h hy yp ph he en na at ti io on n.of length two, and so on.Ea
h subword is a pattern that de�nes integer values related to the desirabilityof hyphens in the positions between its letters. We usually show the values asnumbers between letters, for example 0h0e2n0 means that the values of the hensubword are 0, 0, 2, and 0, where 2 is related to the position between e and n
hara
ters.The interletter values are zero for all subwords ex
ept the ones in TEX's patterndi
tionary. In this
ase, only the subwords0h0y3p0h0 0h0e2n0 0h0e0n0a40h0e0n5a0t0 1n0a0 0n2a0t0 1t0i0o0 2i0o0 0o2n0happen to be spe
ial patterns. TEX
omputes the maximum inter
hara
ter valuethat o

urs at ea
h subword tou
hing ea
h position. The result of all the maxi-mizations is.0h0y3p0h0e2n5a4t2i0o2n0.And the most important part: A hyphen is
orre
t if the hyphen value is odd.Therefore the break-points found are hy-phen-ation.We also
all this type of patterns
ompeting patterns as the bigger hyphenatingvalue wins over the smaller one. Viewed in other way, the patterns hold the
ontextof the hyphen point that is able to de
ide whether the point is/is not good tobreak the word at. To
reate most eÆ
ient patterns we want the
ontext to be assmall as possible. Very non-formally we may also say that the patterns we
reatemay also re
ognize the suitable hyphen points not only in word list they weregenerated from but also in any word that is broken in similar way. The patternshold
hara
teristi
s of the breaking-point o

urren
e.A similar te
hnique may be also used to
reate patterns that re
ognize some-thing else. Quite good results
an be obtained when re
ognizing
ompound wordboundaries (this
an be dire
tly done with OPatGen without modi�
ations),typesetting long versus short s in fraktur and so on. Other appli
ations are be-yond s
ope of this manual.

What the patterns are

4

Now the problem stands how to
reate the pie
es of words with the ugly smallnumbers.2.2 How patterns are generatedWe use an iterative approa
h to generate the patterns. We need an input data�le|di
tionary with hyphen points marked with a spe
ial symbol. We use a dashfor that. The typi
al list of words in English starts withabil-i-tyab-sen
eab-stra
ta
-a-dem-i
a
-
epta
-
ept-ablea
-
ept-edand so on.We go through the di
tionary in several levels. In odd levels, we
reate
overingpatterns, in even levels we
reate inhibiting ones. Let us re
all that odd hyphen-ating values mean that hyphenating is allowed. We also speak about
overing andinhibiting levels.We
hoose pattern
andidates at ea
h level. The
andidate
hoosing rule issimple: we take subwords of given length range. For example in the �rst level wemay take
andidates of lengths 2 and 3, in the se
ond level
andidates of lengths3 to 5.The level
onsists of several passes. The pass is the basi
 unit of the generatingpro
ess. During the pass the input di
tionary is passed just on
e. The passmeans pi
king
andidates of
ertain length and hyphen position. The passes inthe level are ordered from shorter lengths to longer ones and for ea
h length forhyphen positions in \organ-pipe fashion," it means from the middle, then theposition left to the middle, right to the middle, and so on to the edges of theword. The
andidate is a subword that works well and/or badly on the word.For
overing levels working well means
overing an allowed hyphen point and thebad
ounterpart is allowing wrong hyphenation. In inhibiting levels good work isinhibiting an error and bad work is inhibiting a good hyphen already found.We store the number of
ases of good and bad behaviour for ea
h
andidateas good_
ount and bad_
ount. We ignore
andidates that are superstrings ofeither good or bad patterns at this level as they simply have no e�e
t on thehyphenation pro
ess. The shorter
andidate holds the same information as itssuperstring. This optimization is
alled kno
king out.

OPatGen tutorial

5

After the pass is �nished,
andidates are sele
ted. We use three variables to
ontrol this pro
ess|good_wt, bad_wt, and thresh. The pattern
hoosing rulegoes as follows.1. If the
andidate satis�esgood wt � good
ount < thresholdthen we insert the
andidate into patterns marked as bad, it means with oddvalue higher than the
urrent level. We need it for subsequent passes, it willbe removed when the level is �nished.2. If the
andidate satis�esgood wt � good
ount� bad wt � bad
ount � thresholdthen the
andidate is good, we insert it into the patterns with the
urrenthyphenation value (the level number).3. Otherwise, the
andidate is thrown away and we set more_to_
ome. It meansthat there might still be longer patterns extending the
urrent length andhyphen position and we will
he
k them.After that pro
ess various statisti
s are printed.At ea
h level, pattern is
onsidered good if it repairs errors made by previouspatterns. The good_wt, bad_wt, and thresh variables are lo
al for a level. Afterthe level is �nished, the bad patterns that have been added are deleted.When �nishing the work we may have the input di
tionary hyphenated by thepatterns
olle
ted so far. If the number of errors is still to high for us, we may
ontinue making another level
orre
ting the errors of patterns from the previousruns.Confused? Don't
are, breathe deeply and read the step-by-step tutorial, whereall the things you need to know are explained slowly with examples.3 OPatGen tutorialIn this se
tion we study an example of pattern generating pro
ess and explain itinside out,
overing the features of OPatGen generator.Convention: We sometimes highlight di�eren
es between PatGen and OPat-Gen in
urly bra
es, saying fPatGen: no Uni
ode supportg. We hope it makesswit
hing the program easy.

OPatGen tutorial

6

3.1 First generatingWe need an input data to
reate patterns. We often
all the input data thedi
tionary. The di
tionary is a sequen
e of words, one word on a line. The wordsmust start at the �rst
olumn, everything after the �rst spa
e on the line is ignored.The allowed hyphen points are marked with dashes.Let's have the following di
tionary (those are nearly random words over theEnglish alphabet
hosen only to show you the things I want to).ab-
d-efgh
d-
de
d
-id-
dede-fghWe have the words in the di
 �le.3.1.1 Running OPatGenIt is time to run OPatGen. OPatGen takes four parameters, the di
tionary �lename, the patterns to read in, the output �le name and the translate �le name.The translate is a topi
 by itself, so we des
ribe it separately. As the runs ofOPatGen may be quite time-
onsuming, we may read in a set of patterns we
reated in previous levels, as we will see later. For the start, only the di
tionaryand output �les are important. So we substitute the rest with /dev/null. Runthe program with me if you
an, to see the pro
ess alive.opatgen di
 /dev/null out /dev/nullThe s
reen �lls with something like this:This is OPATGEN, version 0.1... shortened ...Translate file does not exist or is empty. Defaults used.left_hyphen_min = 2, right_hyphen_min = 3If we don't say otherwise (using the translate �le), OPatGen knows the Englishalphabet and works in 8-bit ASCII. The translate �le may also set the valuesof left_hyphen_min and right_hyphen_min. The values spe
ify the number ofleft and right
hara
ters of ea
h word where hyphenation is ignored. The valuesare language dependent and they mean the minimal number of
hara
ters that
an be left at the end of a line before a hyphen and the minimal number of
hara
ters that
an go to the next line after a hyphen. The default values are forPatGen
ompatibility, I think it makes no sense to use anything else than 1, 1

OPatGen tutorial

7

when generating hyphenating patterns. We may ignore borders of a word whenusing patterns, and not generating.26 lettersThe number of letters is the number of symbols in the alphabet. Ea
h letter mayhave several representations in the input data, as we'll see later.hyph_start, hyph_finish: 1 10 patterns read inpat_start, pat_finish: 1 2good weight, bad weight, threshold: 1 1 1Here we set the values. The hyph_start and hyph_finish mean the range oflevels we want to make. After spe
ifying those values patterns from the pattern�le are read in. We do not have any as we're just starting, so /dev/null was agood
hoi
e as we have nothing to read in. The patterns to read in may
ontainonly hyphenating values less than hyph_start.The pat_start and pat_finish
ontrol the range of lengths of the patterns.The values 1 and 2 mean we take
andidates of length one and two. The lastthree variables
ontrol the pattern
hoosing pro
ess, the
hoosing rules have beendes
ribed above.Generating level 1Generating a pass with pat_len = 1, pat_dot = 0First the patterns with length one are
reated, starting with the hyphen (weoften say dot) position after the zeroth
hara
ter of the pattern. It sounds quitestupid, nevertheless it is a good way to refer to positions. It simply means theleftmost position of the word, the
andidates we deal with look like 1x, where xis a
hara
ter.0 good 0 bad 6 missed0 % 0 % 100 %The numbers denote the numbers of
ases when the patterns a
t well, badly,and/or miss �nding a hyphen point. The very �rst pass always misses everything,of
ourse. The per
ent
ounts are related to the sum of good and missed, thereforethe sum of the line does not have to give 100.Count data stru
ture statisti
s:nodes: 28patterns: 5

OPatGen tutorial

8

trie_max: 28
urrent q_max_thresh: 3The statisti
s of the internal stru
tures, the most interesting thing is the
ount ofthe patterns, the rest of values needs to know quite a lot about the internal workof the generator.Colle
ting
andidates3 good and 1 bad patterns added (more to
ome)finding 5 good and 1 bad hyphenseffi
ien
y = 1.25Pattern data stru
ture statisti
s:nodes: 28patterns: 4trie_max: 28
urrent q_max_thresh: 5number of different outputs: 3Now the
andidates are
olle
ted. Good and bad ones are added and there were
andidates not satisfying the
olle
ting
onditions, it means there might still begood patterns longer than
urrent ones. This is indi
ated by the (more to
ome)text. Numbers of found good and bad hyphens appear and the eÆ
ien
y is printed.The eÆ
ien
y is
omputed as follows. Let good_
ount be the number ofgood
ases of a
ting of patterns, bad_
ount the number of erroneous
ases, andgood_pat_
ount the number of good patterns. Then the eÆ
ien
y is
al
ulatedas bad eff = threshgood wteffi
ien
y = good
ountgood pat
ount+ bad
ountbad effLet's
ome ba
k to the generating pro
ess.Generating a pass with pat_len = 1, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %Count data stru
ture statisti
s:nodes: 28

OPatGen tutorial

9

patterns: 3trie_max: 28
urrent q_max_thresh: 3Colle
ting
andidates0 good and 2 bad patterns added (more to
ome)finding 5 good and 1 bad hyphensPattern data stru
ture statisti
s:nodes: 28patterns: 4trie_max: 28
urrent q_max_thresh: 5number of different outputs: 4Now we generate a pass looking for patterns x1. It turns out there is nothing goodhere we
an add.Generating a pass with pat_len = 2, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %Count data stru
ture statisti
s:nodes: 29patterns: 1trie_max: 29
urrent q_max_thresh: 3Colle
ting
andidates0 good and 0 bad patterns added (more to
ome)finding 5 good and 1 bad hyphensPattern data stru
ture statisti
s:nodes: 28patterns: 4trie_max: 28
urrent q_max_thresh: 5number of different outputs: 4Candidates x1y are examined.Generating a pass with pat_len = 2, pat_dot = 05 good 1 bad 1 missed83 % 16 % 16 %Count data stru
ture statisti
s:nodes: 29patterns: 1

OPatGen tutorial

10

trie_max: 29
urrent q_max_thresh: 3Colle
ting
andidates0 good and 0 bad patterns added (more to
ome)finding 5 good and 1 bad hyphensPattern data stru
ture statisti
s:nodes: 28patterns: 4trie_max: 28
urrent q_max_thresh: 5number of different outputs: 4Generating a pass with pat_len = 2, pat_dot = 25 good 1 bad 1 missed83 % 16 % 16 %Count data stru
ture statisti
s:nodes: 29patterns: 1trie_max: 29
urrent q_max_thresh: 3Colle
ting
andidates0 good and 0 bad patterns added (more to
ome)finding 5 good and 1 bad hyphensPattern data stru
ture statisti
s:nodes: 28patterns: 4trie_max: 28
urrent q_max_thresh: 5number of different outputs: 4And �nally the
andidates 1xy and xy1 are tested. Note that none of them addedanything useful. Have a detailed look at the output and
he
k
arefully whathappens.1 bad patterns deletedtotal of 3 patterns at level 1During the �rst level one bad
andidate has been added. It is deleted now, whenthe level ends.hyphenate word list <y/n>? yWriting file pattmp.1

OPatGen tutorial

11

5 good 1 bad 1 missed83 % 16 % 16 %The �nal question is if we want to see the work of the new-born patterns on thedi
tionary �le. We want to. So the words of the di
tionary are hyphenated withpatterns we have and the result is written into pattmp.n �le, where n is the lastlevel number. The patterns we have are written into the output �le. The patternsa
t �ve times well, make one error, and
an't �nd one of good hyphen points. Theper
ent
ounts are again related to the sum of good and missed hyphens.Let's now have a look at the results. The patterns we
reated are1
1e1iand the hyphenated di
tionary in the pattmp.1 goesab*
d*efgh
d*
de
d.
id
dede-fghThe hyphens we �nd are marked with `*', the bad ones (we �nd and they arewrong) with `.', and the ones we miss with `-'.Please have a look at the patterns and the output and try to hyphenate thewords using the patterns yourself.3.1.2 Adding more levelsThe patterns are not as good as they might be. They make an error. Let us addthe se
ond level, the inhibiting one. The even levels
orre
t errors, the odd onesadd hyphenating points. First we
opy the out �le into the pat, so as not to haveto generate the �rst level again. Now we start OPatGen with the pattern �lename pat.opatgen di
 pat out /dev/nullNow theOPatGen's output will be mu
h more shortened, as I do not like manualsover 500 pages. Let's set the values, we want to generate the se
ond level, andwe want to deal with
andidates of lengths two and three. Now we slightly prefergood patterns over bad ones, therefore we set the weights to 1, 2, and 1.

OPatGen tutorial

12

... shortened ...hyph_start, hyph_finish: 2 23 patterns read inpat_start, pat_finish: 2 3good weight, bad weight, threshold: 1 2 1Here we go. We start with patterns of length two and
ontinue with length three,the dot positions are ordered in \organ pipe" fashion for ea
h length.Generating level 2Generating a pass with pat_len = 2, pat_dot = 15 good 1 bad 1 missed83 % 16 % 16 %...Colle
ting
andidates0 good and 3 bad patterns added (more to
ome)finding 5 good and 1 bad hyphens...Generating a pass with pat_len = 2, pat_dot = 05 good 1 bad 1 missed83 % 16 % 16 %...Colle
ting
andidates1 good and 3 bad patterns addedfinding 6 good and 1 bad hyphens...Generating a pass with pat_len = 2, pat_dot = 25 good 0 bad 1 missed83 % 0 % 16 %...0 good and 4 bad patterns addedfinding 5 good and 0 bad hyphens...Wow, where is the length three we wanted? The length is silently skipped as therewas no more to
ome, in human words, we know there
an't be longer patternsextending the ones we
reated. So we do not waste time to
he
k them again.

OPatGen tutorial

13

We have taken some bad patterns, we delete them now. We added just onepattern to our set. And we want the word list to be hyphenated.7 bad patterns deletedtotal of 1 patterns at level 2hyphenate word list <y/n>? yWriting file pattmp.25 good 0 bad 1 missed83 % 0 % 16 %Now the patterns and the hyphenated list are:1
2
i1e1iab*
d*efgh
d*
de
d
id
dede-fghWhat an improvement! We redu
ed the number of errors from one to zero! Nowwe only miss one hyphen. We may
orre
t it adding one more level, the third,
overing one.We again
opy
urrent outputs to the pattern �le and repeat
allingOPatGenwith the patterns to read in. Now we set the hyphenation level to 3, the lengthrange from 3 to 3 (do you see it's enough?), and the parameters to 1, 10, and 1.This is how we say that we want patterns that do not have to
over many points,nevertheless if they make an error, they are heavily penalized for that....hyph_start, hyph_finish: 3 34 patterns read inpat_start, pat_finish: 3 3good weight, bad weight, threshold: 1 10 1Generating level 3......

OPatGen tutorial

14

total of 1 patterns at level 3hyphenate word list <y/n>? yWriting file pattmp.36 good 0 bad 0 missed100 % 0 % 0 %Hooray! Complete su

ess! We
over all the hyphen points and make no errors atall, let's have a look at the patterns..de31
2
i1e1iWhat is the dot now? The dot in the pattern �le is a spe
ial
hara
ter meaningthe edge of a word. Su
h a pattern mat
hes only the words starting with de. Thedot may also appear at the very end of a pattern.Final notes: If you have a real di
tionary with thousands of words, do notexpe
t the
overing of hyphen points to be
omplete. There will be errors that
an be
orre
ted adding more levels or using the ex
eption di
tionary. And notethat you may generate several levels at a time giving the level range to the �rstOPatGen's question.Now try generating patterns with di�erent lengths than I did and with di�erentparameters and
he
k the results
arefully.We sometimes need a word list to be hyphenated without pattern generationitself, for example if we want to test the patterns on another word list that theywere
reated. So OPatGen allows a spe
ial setting of the level range to a
hievethe e�e
t. If the hyph_finish is smaller than hyph_start, the patterns are readin, there is nothing to generate, and OPatGen asks whether to hyphenate theword list.3.2 Parameters, weights, and relativesThe important question we have not dis
ussed in the previous overview is howto set the generating parameters good_wt, bad_wt, and threshold. There is nosimple answer to that. More pre
isely, the simple answer is \nobody knows."Setting the parameters is the most interesting part of the generating pro
ess, itis heavily input data dependent. The problem is more than twenty years old andthere is no theoreti
al framework for that.Generating of patterns needs some experien
e and intuition. Now I put onlyseveral remarks what you
an expe
t in general. We write the good_wt, bad_wt,

OPatGen tutorial

15

and threshold values as three numbers to be short, so (1, 10, 4) means good_wtto be 1, bad_wt 10, and threshold 4.Let us start with bad_wt. If that value is low (related to the threshold), youallow patterns to make errors. This may be good in �rst level if you want to
overas mu
h as possible. In higher levels, the setting like (1, very high number like1000 or so, 1)
an be often found, making the patterns to be highly penalized foran error. The good_wt is often set to a small number like 1, 2, or 3. For example,setting (1, 2, 20) may be quite ni
e for �rst levels, as it takes patterns that aregood 20 times with no error, or 22 times with one error and so on. This may besuitable for short patterns, for longer patterns it would miss quite good and error-less patterns if they appear less than 20 times. Another often seen settings are(1, 5, 1), penalizing errors, or (1, 4, 7), preferring patterns
overing more points.Another problem is how to
hange the pattern length range. For our appli
a-tion patterns
an be quite short, 1 to 7
hara
ters for languages like English, a bitmore for German, as an example of a language with longer words. Usual settingis 1{3 for �rst and se
ond level, slowly in
reasing to 4{6 for the �fth level. Somepattern
reators don't like patterns of length 1 and start from 2. In general, theshorter the patterns are, the qui
ker their usage is.There is no golden rule. Read some arti
les summing up the experien
es withgenerating patterns for various languages, there
an be found elsewhere.One small
ompli
ation
an make adjusting the parameters a bit more diÆ
ult.The words in our di
tionary
an be weighted. If there is a number at any interletterposition in the input data, the position is
ounted as many times as the numbersays. It brings the possibility to weight some words in our di
tionary more heavilyto make their hyphenation more important. For examplehy-2phen-a3-ti7onmeans that the position between y and p will be
ounted as it appeared twi
e andthe position between a and t as it appeared three times. The position betweeni and o is
ounted seven times. Also note it makes no di�eren
e if we put thenumber before or after the hyphenation mark.The weight may be a natural number, not only a digit. fPATGEN: only one-digit weights are allowed.gThere is a useful ex
eption. If the number appears in the very beginning ofthe word it means the global word weight that is valid until it is
hanged. Aftera global weight we represent all positions of all following words as having thatweight unless the position itself sets something else. Have a look at the example.Also note the using of global weight 1 to turn ba
k to the defaults.ab-
2d3qw-ertyu4i-op1ef-gh

OPatGen tutorial

16

will be represented as (we don't put down the default weight 1)ab-
2dq3w3-e3r3t3yu4i3-o3pef-ghThis feature may be useful if you want to prefer
orre
t work of your patterns ona subset of the di
tionary over the rest, for example a

ording to the frequen
y ofwords in the language.When hyphenating a word list the weights are
opied into the pattmp.n �le.They are
opied in the \minimal" form, the form of the di
tionary �le doesn'thave to be preserved.3.3 De�ning our alphabetWe
an generate patterns now. But we used only English alphabet for that, thereare many languages using a

ents and more than the twenty-six symbols. Wemay use two approa
hes to handle that problem, the �rst one is to use the es
apesequen
es, the other is Uni
ode. We may also
ombine the two things together.Using Uni
ode obsoletes having es
ape sequen
es to represent letters in TEX,nevertheless we provide this feature for PatGen
ompatibility, even though it
ompli
ates the program
onsiderably.What we need to now is a translate �le. The translate �le
ontrols the al-phabet we use. The �rst line of the translate �le is spe
ial. It sets the values ofleft_hyphen_min and right_hyphen_min variables in the �rst two and se
ondtwo
olumns. If those values are invalid, OPATGEN will ask for them intera
tive-ly. The remaining three
olumns of the line, namely the �fth to the seventh, mayde�ne repla
ements for the ., -, and *
hara
ters to be used in the word list. Therepla
ement
hara
ters may be 7-bit ASCII values. The rest of the line is ignored.The repla
ements might be useful if you want to use some of that
hara
ters todenote an a

ent.The rest of the �le de�nes the letters of the alphabet of the language. Notethat if the translate �le is empty, the defaults are used. If the translate �le is notempty, you must put all the alphabet you use into it, in
luding the default a to zsymbols (if they appear in your input data, of
ourse). We need it to store thewords eÆ
iently.Ea
h line
ontains a delimiter in the �rst
olumn, this is a
hara
ter not o
-
urring in any representation of the letter on the line. The delimiter is any 7-bitASCII value. The delimiter is followed by any number of representations of theletter. The representations are separated by the delimiter. The very �rst repre-sentation of the letter in the line is
alled primary or lower
ase, the other ones

OPatGen tutorial

17

are se
ondary or upper
ase. The names
ome from the fa
t that TEX hyphen-ates words temporarily
onverted to their lower
ase forms. Any of that formsmay be used in input �les, but for OPatGen all of them have one internal
ode.When OPatGen is writing the letter into a �le, it uses the lower
ase form only.fPATGEN: There must be double delimiter to �nish the last es
ape sequen
e inthe end of the line.gAnything after double delimiter is a
omment, either at the very beginning ofthe line or anywhere else. Empty lines are ignored.What the representation of the letter may be depends of OPatGen's mode.If the mode is ASCII (the default we used in our examples), the letter maybe an 8-bit ASCII value or es
ape sequen
e
reated out of 8-bit ASCII values.The Uni
ode mode is spe
i�ed by the -u8 swit
h as the �rst parameter of the
ommand line. In the Uni
ode mode the letter representations may be 7-bitASCII values, UTF-8 multibyte
hara
ters, and es
ape sequen
es made out of7-bit ASCII values. We highly re
ommend using only 7-bit ASCII
hara
ters inthe es
ape sequen
es in any
ase.The es
ape sequen
e starts with an es
ape
hara
ter. If a
hara
ter is usedas es
ape it may not be used as an ordinary
hara
ter. The rest is a sequen
e ofletters and
hara
ters that are used nowhere else (invalid
hara
ters). You maynot use digits, es
apes, or hyphen
hara
ters in the es
ape sequen
es. Let us havean example of es
ape sequen
es. a A \myade�nes \mya as equivalent to a and A. The \
hara
ter is an es
ape
hara
ter.Having that line in our translate, de�ning abb es
ape sequen
e is invalid as thea
hara
ter is a letter. We may de�ne a |bb sequen
e. The |
hara
ter has notbeen used before.If the es
ape sequen
e o

urs in the input �le, it must be followed by a number,a hyphenation
hara
ter, an es
ape sequen
e, end of line, or at least one spa
e. Wemust be able to re
ognize its end. fPatGen: no spa
es, the es
ape sequen
e mustnot be pre�x of another one.g The spa
es after the es
ape sequen
e are
ompletelyignored, whi
h is similar to TEX's reading input routine. The es
ape sequen
e isre
ognized only if it starts with the same es
ape
hara
ter as it was de�ned in thetranslate �le. For example, having \ and | es
ape
hara
ters, then |mya won't bere
ognized as representation of a! Moreover you may de�ne \mya and |mya to betwo di�erent es
ape sequen
es. This di�ers from TEX and I hope I don't have tosay I strongly vote against doing this.Let us have an example of a translate �le. 1 1** I am a
omment. a A \mya \myA

Small but useful tools

18

 b B I am a
omment after two spa
es.#p#P#\varphiThe �rst line sets the left and right minimal hyphenation values to ones. Thethird line de�nes the letter a. This letter may be written in input data as A,\mya, or \myA. The fourth line de�nes an ordinary b letter. The last line of ourexample is analogi
al to the se
ond one, we only demonstrate the usage of non-spa
e delimiter. Note that the \varphi is not followed by spa
e, otherwise itwould not be re
ognized in a word like \varphi-a! It's a good idea to �nish theline with double delimiter to prevent trailing spa
es to make hard-to-�nd errors.We also re
ommend using a visible delimiter. The author on
e spent several hoursdebugging the program to �nally �nd out he had double spa
e in his translate.The syntax is eÆ
ient but it lets you easily shoot in your leg.fPatGen: es
ape sequen
es were usually followed by the spa
e
hara
ter inthe translate �le to make the syntax of input �les
loser to TEX's one. It madelots of problems that lead to Bad representation errors without identifying theline. I
onsider it quite ugly. The translate �le handling in PatGen was addedlater to make it able to handle features of \8-bit TEX" and is full of beautifulprogramming tri
ks. I
onsider it to be the least readable part of PatGen.gThe input data may now
ontain for example words like a\varphi-\myA b andaP-\mya b, they are both equivalent to ap-ab. The sequen
e a\myAP is invalid asthere is no way to re
ognize the end of the es
ape sequen
e. But a\myA\varphiis
orre
t, so is a\mya-\myA2b.OPatGen de
ides whether the �les are in Uni
ode or ASCII only a

ordingto the -u8 swit
h. No lo
ale or other system setting is taken into a

ount to beable to handleUni
ode on systems that don't support it. As forgetting the -u8 isa
ommon mistake (at least I forget this very often), the error message (that seemsit has nothing to do with this problem at �rst sight) also reminds this possibleproblem. The -u8 swit
h must be the �rst parameter of the
ommand line.OPatGen also tries pretty hard to
he
k the
onsisten
y of the translate �le.If an error o

urs OPatGen informs the user reasonably what happens.The order of lines in the translate �le
ontrols the \alphabeti
al order" ofsymbols in the output. The output �les will be
reated in that order ex
ept thepattmp.n. That �le keeps the order of the di
tionary.4 Small but useful tools4.1 di
2traskeletIn order to
reate a list of all
hara
ters o

urring in the di
tionary �le, you
an use a tool named di
2traskelet. This program
an be found in the tools

Invoking OPatGen

19

dire
tory. It produ
es a simple list of
hara
ters that appear in the �le in simple\binary" order. You
an use this as a base to
reate the translate �le, with norisk of forgetting a
hara
ter.The di
2traskelet program is
alled using two or three parameters, if the�rst is -u8, it swit
hes into UTF-8 mode. The following two parameters are �lenames of the di
tionary �le and of the translate skeleton.4.2 opgwrap and opglog2repThe opgwrap utility is an OPatGen wrapper. It takes the �le names to deal withand the level parameters and
alls OPatGen repeatedly. Ea
h run is logged,therefore you may see exa
tly what happens. Moreover it always hyphenates theword list. Use opgwrap --help to exa
t explanation and examples.The wrapper produ
es logs with names like log.1, log.2, et
. It is veryuseful to see the �nal results of the runs, it means the �nal
overing information.Therefore we have a small tool named opglog2rep (for OPatGen log to report),it takes the logs, the starting number, and the name of the output �le. Then it�lls the output �le with the �nal results of the logged runs, more pre
isely withseveral �nal lines of logs. If the word list haven't been hyphenated in
ertain run,it just adds some unuseful rubbish.Both the programs are simple Perl s
ripts, not very intelligent but may beuseful. They were tested on Un*x platforms and the report maker uses the tailtool.5 Invoking OPatGen� opatgen --helpprints usage help and quits� opatgen --versionprints version info and quits� opatgen [-u8℄ DICTIONARY PATTERNS OUTPUT TRANSLATEasks for parameters intera
tively and generates patterns using di
tionary, read-ing patterns before start, writing to output �le and all that as translate
on-trols. If -u8 is set, all the �les are in UTF-8 en
oding, otherwise 8-bit ASCII.

Dealing with bugs

20

6 Dealing with bugsIf you �nd a bug in the OPatGen program or its do
umentation, please report itto the author and maintainer, xantos (at) fi.muni.
z. Des
ribe the data youhave problem with and the
onditions and parameters when the program fails.Also add the version number, preferably the CVS revision ID, information aboutyour platform and
ompiler. Volunteers to improve my English are also wel
ome.The software is far from perfe
t. If you have any questions, suggestions, notes,or just anything you want to tell, feel free to
onta
t the author. I'd be reallyhappy to hear of you. Your notes will be taken seriously, this di�ers from most
ommer
ial software.7 CreditsI would like to thank to� Petr Sojka, my adviser. He taught me all the basi
s about pattern generatingand helped me very mu
h with analysing the program and its implementation.He always wants more than I am able to do; I am sure this permanent tensionmade this program better.� My parents who were walking around silently when I was
hewing my pen andhitting the keyboard.� My friends who didn't ask too often how things go.� All the people who develop free software, don't wont me to put down theirnames, it would be loooong.

