
Proceedings of the Language Technologies for All (LT4All) , pages 379–383

Paris, UNESCO Headquarters, 5-6 December, 2019.

c© 2019 European Language Resources Association (ELRA), licenced under CC-BY-NC

379

Rich Morphology, No Corpus – And We Still Made It. The Sámi
Experience

Sjur Nørstebø Moshagen, Trond Trosterud
UiT The Arctic University of Norway
Department of Language and Culture

{sjur.n.moshagen, trond.trosterud}@uit.no
Abstract

The article presents an infrastructure for building grammar models and language technology applications for indigenous
languages, i.e. for languages with a too complex grammatical structure and a lack of the huge amount of corpus material
being necessary for mainstream language technology approaches to work. The infrastructure and grammar models
provide a large array of applications for indigenous languages. The main problem for indigenous languages turns out
to be structural hurdles set up by the major software providers. The article presents these hurdles, as well as a way of
overcoming them.

Keywords: language technology, indigenous languages, morphology-rich languages, integration, application pro-
gramming interfaces, localisation, language resource policies, standards

Čoahkkáigeassu (in North Saami)
Artihkal čájeha infrastruktuvrra, mii hukse grammatihkkamálliid ja giellateknologalaš prográmmaid eamiálbmotgielaide
dahje gielaide, main lea kompleaksa giellaoahpalaš struktuvra. Eamialbmotgielain váilot maid teakstačoakkáldagat, mat
leat dárbbašlaččat váldogielaid giellaoahpalaš reaidduid huksemii. Infrastruktuvrra ja giellamálliid bokte lea vejolaš hukset
máŋggaid prográmmaid dávviguovlluid eamiálbmotgielaide. Váldováttisvuohta dál lea, ahte stuorra prográmmafitnodagat
leat huksen prográmmaideaset nu, ahte ii leat vejolaš lasihit eamiálbmotgielaid heivehemiid fitnodagaid prográmmaide.
Artihkal čájeha makkár váttisvuođaid birra lea sáhka, ja mo daid sáhttá čoavdit.

1. Introduction
This article presents a way of making grammatical
analysers and language technology tools for minority
languages with a complex grammatical structure. The
infrastructure is hosted at The Arctic University.
The article is organised as follows: First we present
our modus operandi, philosophy, scope of work and
our major results. The next section presents the ma-
jor problems facing language technology for minority
languages, where integration of our solutions in ma-
jor writing tools is a key point. The following section
presents a solution to these problems, in the form of a
manifesto for open language technology. Finally comes
a conclusion.

2. Our modus operandi
We work together with the language community, and
use rule-based technology and traditional linguistic
analysis. In principle, one native speaker is enough,
although we always try to involve the people or organ-
isations that have the confidence of or are appointed by
the language community to handle language planning.
Our models are not trained on any corpus, and the
data sparsity bottleneck thus does not exist. Our tech-
nology supports the most complex morphology and
morphophonology, but also works well for less com-
plex languages.
By being grammar-based, we are able to offer a three-
part cooperation, where all parties have something
to gain: Participating in a project building language
models within our infrastructure, university-based lin-

guists will get the opportunity to test their grammat-
ical generalisations on a full scale. Language activists
will get the tools they need in order to revitalise the
language, and programmers will get the opportunity to
apply their programs on a new language. Opening up
for a cooperation with university linguists is of crucial
importance: Each language with a formalised orthog-
raphy has at least one linguist devoting his or her life
to this language. A grammar-based approach will offer
this linguist good reasons for joining the project.

2.1. Open source, rule-based technology
In order to model the complex grammar of indigenous
languages, we use the Helsinki Finite State Technol-
ogy, Hfst1, a tool set being source-code compatible
with (Beesley and Karttunen, 2003), and ultimately
going back to (Koskenniemi, 1983). It is capable of
modeling natural languages in all its complexity, in
an explicit and transparent way. To disambiguate
morphological homonymy and adding syntactic func-
tion and thematic roles, we use Constraint Grammar
((Karlsson, 1990), (Karlsson et al., 1995)) and the
compiler VISLCG3 2.
The net result of this is a set of powerful grammati-
cal analysers and generators for circumpolar and other
languages3. In addition to providing a source of infor-
mation on the grammar of these languages, the models
are integrated in a language-independent infrastruc-

1http://github.com/hfst
2http://visl.sdu.dk/cg3.html
3An interface for using these programs can be found at

http://giellatekno.uit.no

380

ture ((Moshagen et al., 2013)). By means of this in-
frastructure we are able to build a wide range of appli-
cations and tools. This includes a set of text proofing
tools4, programs for language learning5 and for ma-
chine translation6.

2.2. Mainly circumpolar languages
We primarily work with Saami languages, but also with
other Uralic languages, with Greenlandic and Faroese,
and with First nation languages in Canada (see e.g.
(Arppe et al., 2016). All but Faroese are known for
very to extremely rich morphology.

Figure 1: Morphology-enabled dictionaries in the
present infrastructure

2.3. Lots of tools
Using these language models, we build spelling check-
ers, grammar checkers, mobile keyboards with spellers,
rule-based machine translation, and offer analysed (i.e.
machine-annotated) corpora7. We also make intelli-
gent computer-assisted language Learning tools and
dictionaries with grammars (cf. (Johnson et al., 2013),
an overview of the languages is given in Figure 1).
Both the infrastructure, the linguistic resources, and
most of the corpus texts are available as open source.
Some corpus texts are not open, due to copyright is-
sues, but single quotes are available via the corpus in-
terface.

3. So we made it - but still?
As described above, we have developed a lot of tools,
covering key areas for indigenous languages. Still, our
tools are not for everyone, not because they are not

4Cf. Divvun, http://github.com/divvun, see also (An-
tonsen, 2012), (Wiechetek et al., 2019)

5http://oahpa.no
6For machine translation we use the Apertium formal-

ism (http://github.com/apertium), cf. (Antonsen et al.,
2017) for a presentation

7http://gtweb.uit.no/korp

available – all our tools are open source and free for ev-
eryone – but because the platforms and environments
people are using are not open for all languages.
There are numerous examples of such hindrances, from
the very low-level language codes to the highest level
speech processing API’s. The following are but a few
of the issues we have met.
For example, our spelling checkers do not work in
Chromebooks, and it is not possible to make our
spellers work in Google Docs the same way as Google’s
own tools with red squiggles and right-click function-
ality. The same is true for MS Office 365. These are
problems created by Google and Microsoft – we know
that our spellers work, but we are not allowed to put
them to use. There might not be an API for provid-
ing speller services (e.g. in Chrome OS), or Microsoft
and Google have not made available systems for adding
third-party spellers to their web-based Office suites.
Another example is combining diacritics in Unicode.
These are often unreadable when used in indigenous
languages, cf. Figure 2. The explanation is an exam-
ple of colonial structures manifested in basic language
technology: the Unicode consortium has established
a principle that no new precomposed letters can be
added to the standard, and that new base character +
diacritic combinations should be handled by a dynamic
composition mechanism – the diacritic is automatically
placed on the base character in the optimal position.
Although this sounds like a nice way of keeping the size
of Unicode within managable boundaries, in practice
it does not work, and it hits indigenous and minority
languages only. The problem is that the combining
machinery varies by each implementor, giving incon-
sistent results. One can never trust that the visual
appearance on one own’s computer will be the same as
on the reader’s. And often the result is just gibberish.

Figure 2: How dynamic diacritics often render in pop-
ular text engines (top). Correct rendering below.

Why is it only hitting minority and indigenous lan-
guages? Because all majority languages are covered
by the existing precomposed letters, so none of the de-
velopers really get to see the problems in daily use. It
is clearly so, since the bugs illustrated above have been
consistent and persistent for at least 10 years.
While it is easy to criticise the makers of the text ren-

381

dering engines, one could as well blame the Unicode
standard for the situation. Why should new precom-
posed letters be banned from the standard? Space is
cheap nowadays, and adding some extra letters based
on existing symbols to a font should also be quite
cheap. One could assume that in high-quality, broad-
coverage fonts the issue would then be resolved. One
could still keep the present, dynanmic composition as
a fall-back for less developed fonts, and there will still
be cases where dynamic compounding is an accept-
able solution. Seen from the perspective of minority
languages, whether the issue is solved by better font
rendering or by extending the characters repertoire of
Unicode is not important. The point is that it should
be solved, and not be kept in a situation where neither
solution works.
Dictionaries and easy access to definitions, translations
and usage examples are very important to minority
and indigenous language communities, much more so
than for majority languages. And the ability to look
up a word in text and immediately get an explanation
and translation is crucial in language revitalisation, all
the while these languages typically have complex in-
flections making a direct lookup based on the word
form often challenging.
Many operating systems, both desktop and mobile, do
have such functionality built-in. Unfortunately it is of-
ten either locked down, or of very limited use because
there is no way to provide morphological analysis and
disambiguation of the input text. So while there is
plenty of support for English speakers wanting to learn
or needing help in understanding German on e.g. iOS,
there is no way the same service can be provided to
indigenous and minority languages. It is possible to
provide similar functionality via other means, but that
includes extra steps for the users, steps that in practice
is a blocker for actual use. Why can’t there be a dictio-
nary lookup API available to anyone and with hooks
for morphological analysis, providing user services the
same way as Apple’s own licensed content? Why does
third party content have to be treated like third class
citizens?
There are a number of settings in which it is desirable
to have localised software, including whole operating
systems. But most software is not easily localisable,
or independently localisable at all. And if it is, it is
usually a non-trivial task to distribute the localisation
to the users. And if you are able to overcome all these
hurdles, you will eventually find that your language is
not listed in the language preferences of your operating
system, so that the localisation is either unavailable, or
the localised software has to resort to special settings
to make it available. On top of that the localisation
process varies by software and operating system, and is
very time consuming despite software text strings usu-
ally following a simpler syntax and a lot of repetition.
The end result is that most software and operating
systems are not localised beyond the dominating lan-
guages, and often they can’t be localised even if one

wants to.
Speech technology is one of the hotspots of language
technology these days, and there are academic papers
on how speech technology can help overcome the digi-
tal divide for indigenous languages by just skipping the
written mode, cf. (Palkar et al., 2012). The problem is
just that – even if you succeed in building that fantas-
tic speech recognition + machine translation system –
you can’t make it work where the users are. That is,
you can’t add your own voice to the Android phones
used by the language community, and chances are that
the language as such is not even recognised by the op-
erating system. And the speech technology API’s are
most likely closed behind an unfriendly license, or not
available at all.
These are just some examples of issues meeting indige-
nous and minority langauge communities. The lan-
guage technology groups at UiT are just two of many
working to improve the situation for these language
communities, but due to the issues mentioned above,
we just can’t provide the tools and services our users
want!
To be clear, issues like the above are not restricted
to the software providers mentioned, the providers are
just examples. The problems are found everywhere in
the software industry, including in major open-source
projects.

4. Solution: A Manifesto for Open
Language Technology

To solve the issues discussed in the previous section,
we propose a set of simple software development prin-
ciples, dubbed a Manifesto for Open Language Tech-
nology. The four principles are:
Open localisation: all software should be localisable

independently of the producer of the software
Open interfaces: all language-related programming

interfaces should be open by default
Open resources: all language resources should be

open and accessible for everyone, given the per-
mission of the language community

Accessible standards: language-related interna-
tional standards should be respected, fully
implemented and implementations should be
regularly updated

We’ll elaborate on these principles in the following sec-
tions.

4.1. Open localisation
The software belongs to its creators, but one could ar-
gue that the user interface language belongs to the lan-
guage community, or rather, that any langauge com-
munity should have an independent right to localise
any software they deem necessary to their language,
without asking the creator of the software. In fact,
the localisation of software and access to localisations
should be made such that the software creator should
not need to be involved at all.

382

Given that the major software platforms nowadays
have their own app stores, it should be possible to
add something like a locale store to it, a place where
users can get and install localisations for any language
they want. And the localisation packages should in-
clude localisations for any piece of software that has
been localised into that language, be it the OS itself or
any first or third party software package.
The first principle says that the language belongs to
the language community, and that should also be true
for localisation.

4.2. Open interfaces
Modern digital devices usually come with a lot of
linguistic features, from spellers to digital assistants.
Most, if not all, of these features have an API at some
level. But these API’s are not equal: some are open
and free, such as speller engine API’s, others are be-
hind license bars, such as a lot of speech technology
API’s, and some are not public at all, such as the API’s
for adding speech assistant support for new languages.
The major software houses will never make language
technology for most of the world’s languages, and that
is fine, they don’t have to. What is not fine is that they
don’t allow the language communities to develop that
technology themselves, by locking all needed API’s be-
hind bars of various kinds.
The second manifesto principle says that all API’s re-
lated to language technology should be open and ac-
cessible to any language, no questions asked.
This principle does not mean that the language tech-
nology itself has to be open, it just says that if the
OS vendor does not provide support for language A,
it should not stop others from providing that support,
and the support should be transparent for the users.

4.3. Open resources
Building linguistic resources for a language is time con-
suming independently of the actual technology being
used. It is vital that the language resources belongs
to and are in control of the language community, both
for legal and ethical reasons. Too many times it has
happened that language resources for an indigenous
language has been owned by a private entity, blocking
reuse of those resources in settings not directly bene-
fitting that private entity.
The best way to ensure this is to always develop lin-
guistic resources using an open license, although that
must in the end be decided by the language commu-
nity. The third manifesto principle says exactly that:
language resources should be open independently of
private entities, and the license and openness should
be decided by the language community.

4.4. Accessible standards
There are a number of digital standards relating to
human languages. And the standards usually take all

languages of the world into consideration. But unfor-
tunately these standards are not always implemented
in full, and they are thus unreliable and unaccessible.
The most visible example is the ISO 639 series of lan-
guage codes, especially the 639-3 language codes that
cover in principle every language on earth. What is
lacking is support from the software industry, espe-
cially the operating system developers.
All OS’s do recognise these codes as language codes,
but that’s it. For most languages, its code is not recog-
nised, just that it is some language code. This means,
for example, that most languages:

• are not known to the system, and can’t be a pre-
ferred locale

• show up as language codes if you install tools for
them, not with the language name

• have to be hidden behind the other language code
to be recognised on some systems

• can not be used for speech technology applications
All digital standards relating to human languages, es-
pecially the ISO 639 standard, should be treated the
same way as Unicode: be fully implemented, and up-
dated regularly both by the standard bodies and by
the OS vendors. This is what the last principle is all
about.

5. Conclusion
We have developed an infra and tools for a number of
morphologically complex languages. We have shown
that LT tools are possible for any language, irrespec-
tive of available corpus and grammatical complexity,
but we have also shown that there is a lot of issues
left, issues caused by lack of support and direct ne-
glect from the major players in the software industry.
Finally, we propose a short but pointed list of software
development principles to address the issues we have
identified. The ultimate goal is to achieve indigenous
self-determination in the digital realm.

6. Acknowledgements
We would like to thank our collegues at Divvun and
Giellatekno in Tromsø for the fruitful cooperation
over the years, our international partners, a.o. The
Techno Creatives, Gramtrans, Trigram, Kvensk in-
stitutt, Oqaasileriffik, and FU-lab (Syktyvkar). The
work is mainly financed by The Arctic University of
Norway and by the Norwegian Ministry of Local Gov-
ernment and Modernisation. Important steps forwards
have been made possible by project support from the
Research Council of Norway and by Kone Foundation
of Finland, as well as by the Social Sciences and Hu-
manities Research Council of Canada.

7. Bibliographical References
Antonsen, L., Gerstenberger, C., Kappfjell, M.,

Rahka, S. N., Olthuis, M.-L., Trosterud, T., and Ty-
ers, F. M. (2017). Machine translation with North

383

Saami as a pivot language. In Proceedings of the
21st Nordic Conference on Computational Linguis-
tics, NoDaLiDa, 22–24 May 2017, Gothenburg, Swe-
den, volume 29 of NEALT Proceedings Series, pages
123–131. Linköping University Electronic Press.

Antonsen, L. (2012). Improving feedback on L2 mis-
spellings – an FST approach. In Proceedings of the
SLTC 2012 workshop on NLP for CALL, Lund, 25th
October, 2012, volume 80 of Linköping Electronic
Conference Proceedings, pages 1–10. Linköpings uni-
versitet.

Arppe, A., Lachler, J., Trosterud, T., Antonsen, L.,
and Moshagen, S. N. (2016). Basic language re-
source kits for endangered languages: A case study
of Plains Cree. In Proceedings of the LREC 2016
Workshop CCURL 2016 – Towards an Alliance for
Digital Language Diversity, pages 1–8. LREC.

Beesley, K. R. and Karttunen, L. (2003). Finite State
Morphology. Studies in Computational Linguistics.
CSLI Publications, Stanford, California.

Johnson, R., Antonsen, L., and Trosterud, T. (2013).
Using finite state transducers for making efficient
reading comprehension dictionaries. In Proceedings
of the 19th Nordic Conference of Computational Lin-
guistics (NODALIDA 2013); May 22–24; 2013; Oslo
University; Norway, volume 16 of NEALT Proceed-
ings Series, pages 59–71. Linköping University Elec-
tronic Press.

Karlsson, F., Voutilainen, A., Heikkilä, J., and Anttila,
A. (1995). Constraint Grammar. A Language-
Independent System for Parsing Unrestricted Text.
Natural Language Processing. Mouton de Gruyter,
Berlin, New York.

Karlsson, F. (1990). Constraint grammar as a frame-
work for parsing running text. In COLING ’90 Pro-
ceedings of the 13th conference on Computational
linguistics, volume 3, pages 168–173, Helsinki.

Koskenniemi, K. (1983). Two-level Morphology. A
General Computational Model for Word-forms Pro-
duction and Generation, volume 11 of Publications
of the Department of General Linguistics. University
of Helsinki.

Moshagen, S. N., Pirinen, T., and Trosterud, T.
(2013). Building an open-source development infras-
tructure for language technology projects. In Pro-
ceedings of the 19th Nordic Conference of Com-
putational Linguistics (NODALIDA 2013); May
22–24; 2013; Oslo University; Norway, num-
ber 16 in NEALT Proceedings Series, pages 343–352.
Linköping University Electronic Press.

Palkar, S., Black, A., and Parlikar, A. (2012). Text-
to-speech for languages without an orthography. In
Proceedings of COLING 2012: Posters, pages 913–
922, Mumbai, India, December. The COLING 2012
Organizing Committee.

Wiechetek, L., Moshagen, S., Gaup, B., and Omma,
T. (2019). Many shades of grammar checking –
launching a constraint grammar tool for north sámi.
In Eckhard Bick et al., editors, Proceedings of the

NoDaLiDa 2019 Workshop on Constraint Grammar:
Methods, Tools and Applications, Turku, Finland,
volume 33 of NEALT Proceedings Series, Linköping,
Sweden. Linköping University Electronic Press.

	Introduction
	Our modus operandi
	Open source, rule-based technology
	Mainly circumpolar languages
	Lots of tools

	So we made it - but still?
	Solution: A Manifesto for Open Language Technology
	Open localisation
	Open interfaces
	Open resources
	Accessible standards

	Conclusion
	Acknowledgements
	Bibliographical References

